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Games and Natural Number-valued Semantics

of the Modal µ-calculus

Yoshinori Tanabe Masami Hagiya

The modal µ-calculus has strong expressive power to describe properties of Kripke structures. The seman-

tics of the logic can be expressed using games: for a given Kripke structure, a parity game between Player

and Opponent can be defined so that a state satisfies a formula if and only if the corresponding vertex

of the game belongs to the winning region of Player. The games play an important role in the standard

decision procedure for satisfiability. In previous research, we introduced a non-standard semantics of the

logic: a truth value of a formula is an element of a natural number or the infinity. Thus, formulae express

quantitative properties of Kripke structures. In this work, toward the research of the satisfiability problem

of our semantics, we develop a technique which is a counterpart of the game expression of the ordinary

semantics.

1 Introduction

Modal µ-calculus [5], like its various sublogics,

has widely been used as a language to describe

properties of Kripke structures. Despite of its

strong expressibility, the satisfiability problem of

the logic is decidable [2]. This fact leads to appli-

cations of the logic such as synthesizing programs

from temporal properties [1] [6] or verification of

heap manipulating programs [8].

The authors introduced a non-standard seman-

tics of the logic [4]. The semantics is given over

Kripke structures as the ordinary one, but the truth

values of formulae are elements of N∞ = N∪{∞}.
Thus, formulae can express quantitative properties

of Kripke structures such as the distance between

two states, or the sum of the weight given to each

status.

From application point of view, it is important

to establish a model-checking algorithm and a de-

cision procedure for satisfiability. Unlike the ordi-

nary semantics, even existence of a procedure for

model-checking is non-trivial, as the naive repeti-
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tion method may not terminate because the reverse

magnitude relation > on N∞ is not well-founded.

However, using a suitable acceleration technique,

we can build a model-checking algorithm [7].

For the satisfiability problem, we have a partial

result. Let us denote the truth value of formula φ

at state s of a Kripke structure K by JφKK(s). We

built a procedure that decides whether there exist

K and s such that JφKK(s) = 0 holds. The proce-

dure first translates a given formula φ to φ′ that is

equi-satisfiable to φ, namely, there is K and s such

that JφKK(s) = 0 under the N∞ semantics if and

only if φ′ is satisfiable under the ordinary seman-

tics. Thus, by combined with a decision procedures

for the ordinary semantics, the translation gives us

a decision procedure for the N∞ semantics.

A similar translation is possible even if we re-

place 0 with ∞. We naturally wish to expand the

result for any n ∈ N∞. However, a small experi-

ment shows that defining a translation for arbitrary

n ∈ N∞ is too complicated. Rather, we appar-

ently have more practical chance to expand a deci-

sion procedure for the ordinary semantics directly

so that it fits the N∞ semantics. The standard

decision procedure for the ordinary semantics de-

pends on the fact that for given Kripke structure

K and formula φ, a parity game G between Player

and Opponent can be defined so that φ is satisfied
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at a state s of K if and only if the corresponding

vertex of G to s belongs to the winning region of

Player [3]. For expanding the decision procedure to

the N∞ semantics, we need to build a correspond-

ing game for the semantics, which is the target of

this paper.

For each subformula ψ of given formula φ, n ∈
N∞, and state s of given Kripke structure K, there

is a corresponding node (ψ, s, n). Roughly, Player

plays to show JψKK(s) < n+1 and Opponent plays

to rebut it. We give a precise definition of the game

and show that JφKK(s) < n+1 if and only if (φ, s, n)

belongs to the winning region of Player. The game

is carefully designed so that if the initial vertex is

(φ, s, n), then any visited vertex (ψ, t,m) satisfies

m ∈ {∞, 0, 1, . . . , n}. Thus, if K is finite, then the

set of necessary vertices is also finite. This prop-

erty will be crucial to build a decision procedure

for satisfiability using the game.

The rest of the paper is organized as follows. In

Section 2, we review the syntax of the logic and the

N∞ semantics. We also introduce several concepts

and lemmas that are needed to describe strategies.

In Section 3, we define the game and strategies for

Player and Opponent. Then, the equivalence proof

is given in Section 4. Section 5 concludes the paper.

2 Preliminaries

2. 1 Syntax and Semantics

Let PS be the set of propositional symbols and

PV be the set of propositional variables. The for-

mulae of the modal µ-calculus are defined as fol-

lows:
φ ::= p | X | ¬φ | φ ∨ φ | φ ∧ φ |

♢φ | �φ | µXφ | νXφ
where p ∈ PS and X ∈ PV. All occurrences of X

in µXφ and νXφ must be positive in φ. That is,

the number of negations of which the occurrence is

in the scope must be even.

K = (S,R,L) is a Kripke structure if S is a

set, R ⊆ S × S, and L : PS × S → N∞. In

this paper, S can be finite or infinite. A func-

tion ρ : PV × S → N∞ is called a valuation. For

formula φ and t ∈ T , the value JφKK,ρ(s) ∈ N∞

of φ at s is defined as in Figure 1. K and/or ρ

are omitted if they are clear from the context. In

Figure 1, sR is the set {s′ ∈ S | (s, s′) ∈ R} for

s ∈ S. On is the class of ordinal numbers. For

function f , f [a 7→ b] is the function g whose domain

JpKρ(s) = L(p, s)

JXKρ(s) = ρ(X, s)

J¬ψKρ(s) =

{
0 if JψKρ(s) = ∞
∞ if JψKρ(s) <∞

Jψ1 ∨ ψ2Kρ(s) = min(Jψ1Kρ(s), Jψ2Kρ(s))
Jψ1 ∧ ψ2Kρ(s) = Jψ1Kρ(s) + Jψ2Kρ(s)
J♢ψKρ(s) = min(JψKρ(s′) | s′ ∈ sR)

J�ψKρ(s) =
∑

(JψKρ(s′) | s′ ∈ sR)

JµXψKρ(s) = inf{Fα(s) | α ∈ On},
where Fα(s′) = inf{JψKρ[X 7→Fβ ](s′) | β < α}

JνXψKρ(s) = sup{Fα(s) | α ∈ On},
where Fα(s′) = sup{JψKρ[X 7→Fβ ](s′) | β < α}

Fig. 1 Values of formulae

is dom(f) ∪ {a}, and whose values are defined by

g(a) = b and g(x) = f(x) for any x ∈ dom(f)\{a}.
Note that the distributive law Jφ∨(ψ1∧ψ2)K(s) =J(φ∨ψ1)∧(φ∨ψ2)K(s) does not hold. De Morgan’s

law is not satisfied: J¬�φK(s) = J♢¬φK(s) does not

necessarily hold if state s has infinite successors.

Double negation cannot be eliminated: J¬¬φK(s) ̸=JφK(s) unless JφK(s) = 0 or JφK(s) = ∞.

Let φI be a given closed formula, and K =

(S,R,L) is a given Kripke structure. We only con-

sider propositional variables occurring in φI. Thus,

PV is the set of propositional variables that occur

in φI. Without loss of generality, we assume that

each propositional variable X is bound in φI only

once. Symbol σ is used to express either operator

µ or operator ν. The bounding formula of X is de-

noted by BF(X): i.e., if σXψ occurs in φI, then

BF(X) = σXψ. The direct subformula of BF(X),

ψ in this case, is denoted by BFS(X). The cor-

responding fixed-point operator is denoted by σX .

For example, if µXνY φ ∈ SF, then σX = µ and

σY = ν.

Unless explicitly stated otherwise, a “subfor-

mula” means its occurrence. For example, formula

φ = X ∧ ¬X has four subformulas: φ itself, ¬X,

and two occurrences of X. We write ψ ≤ φ if ψ

is a subformula of φ. The set of subformulas of φI

is denoted by SF. The set SF can be divided into

two: the set SF+ of positive subformulas and the

set SF− of negative subformulas. They are defined

as follows:
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• φI ∈ SF+

• If ¬φ ∈ SF+ (SF− resp.), then φ ∈ SF− (SF+

resp.).

• If ψ is a direct subformula of φ ∈ SF+ (SF−

resp.), then ψ ∈ SF+ (SF− resp.).

If φ ∈ SF+, we write sgn(φ) = 1, otherwise,

sgn(φ) = −1. For any X ∈ PV, sgn(X) =

sgn(BF(X)) = sgn(BFS(X)).

For each φ ∈ SF, we define the set FV(φ) of (pos-

sible) free variables in φ by FV(φ) = {X ∈ PV |
φ < BF(X)}. We define a partial order ≺ on PV:

X ≼ Y if and only if BF(X) ≤ BF(Y ). The index

idx(X) of X ∈ PV is the number of propositional

variables Y such that X ≺ Y .

2. 2 Intermediate Values

Let Seq be the class of sequences of ordinal num-

bers. Seql = {ξ ∈ Seq | len(ξ) = l} for l ∈ N, and

Seqφ = Seq |FV(φ)| for φ ∈ SF. An ordinal number

α is considered as a sequence of length one, i.e., an

element of Seq1. For ξ ∈ Seq, its l-th element is de-

noted by ξ(l). For ξ, ξ′ ∈ Seq, their concatenation

is denoted by ξ : ξ′. If n ≥ len(ξ), the prefix of ξ

whose length is n is denoted by ξ � n.

We define a well order on SeqφI
: ξ ≤ η holds if ei-

ther there is l such that ξ � l = η � l and ξ(l) < η(l)

or ξ is an extension of η, i.e., η = ξ � len(η). It is

similar to the lexicographical order, but the order

on the extension is reversed. This is a well order

on
∪
φ∈SF Seqφ.

Let φ ∈ SF, ξ ∈ Seqφ, and s ∈ S. We define

intermediate values iv(φ, ξ, s) as in Figure 2.

The relation between J·K and iv(·, ·, ·) is as fol-

lows. For ξ ∈ Seq, we define valuation ρξ by

ρξ(X)(s) = iv(X, ξ, s). (The right hand side is not

defined if idx(X) > len(ξ). In such cases, we assign

arbitrary values, 0 for example.)

Lemma 1. For any φ ∈ SF and ξ ∈ Seqφ,

iv(φ, ξ, s) = JφKρξ (s). In particular, iv(φI, ϵ, s) =JφIK(s), where ϵ is the empty sequence.

Proof. By a straight-forward induction on the con-

struction of φ.

Lemma 2. There is an ordinal number κ such that

iv(σXφ, ξ, s) = iv(φ, ξ : κ, s) for all σXφ ∈ SF,

ξ ∈ SeqσXφ, and s ∈ S.

Proof. This can be achieved by taking κ sufficiently

iv(p, ξ, s) = L(p)

If σX = µ, then iv(X, ξ, s) =
∞ if ξ(l) = 0

iv(φ, ξ′ :α, s) if ξ(l) = α+ 1

infβ<ξ(l) iv(φ, ξ′ :β, s) if ξ(l) is limit.

If σX = ν, then iv(X, ξ, s) =
0 if ξ(l) = 0

iv(φ, ξ′ :α, s) if ξ(l) = α+ 1

supβ<ξ(l) iv(φ, ξ′ :β, s) if ξ(l) is limit.

where φ = BFS(X), l = idx(X),

and ξ′ = ξ � l.

iv(¬φ, ξ, s) =

{
0 if iv(φ, ξ, s) = ∞
∞ if iv(φ, ξ, s) <∞

iv(φ1 ∨ φ2, ξ, s) = min(iv(φ1, ξ, s), iv(φ2, ξ, s))

iv(φ1 ∧ φ2, ξ, s) = iv(φ1, ξ, s) + iv(φ2, ξ, s)

iv(♢φ, ξ, s) = min(iv(φ, ξ, t) | t ∈ sR)

iv(�φ, ξ, s) =
∑

(iv(φ, ξ, t) | t ∈ sR)

iv(µXφ, ξ, s) = inf{iv(φ, ξ :α, s) | α ∈ On}

iv(νXφ, ξ, s) = sup{iv(φ, ξ :α, s) | α ∈ On}

Fig. 2 Intermediate values

large. For example, it is sufficient to take κ as an

uncountable cardinal number bigger than the car-

dinality of S.

We fix an ordinal number κ that satisfies the con-

dition in Lemma 2.

The value of iv(φ, ξ, s) increases or decreases

when the value of ξ changes. For example, as-

sume we have ξ, η ∈ Seqφ, and ξ(l) < η(l) and

ξ(i) = η(i) for all i except for l. Which of iv(φ, ξ, s)

and iv(φ, η, s) is bigger depends on the correspond-

ing variable X that satisfies idx(X) = l. There

are two factors: whether sgn(φ) = sgn(X) and

whether σX = ν. If none or both of them are

satisfied, then iv(φ, ξ, s) ≤ iv(φ, η, s), otherwise

iv(φ, ξ, s) ≥ iv(φ, η, s).

Based on this observation, we introduce the fol-

lowing definitions. Let φ ∈ SF. We divide FV(φ)

into two subsets, FVI(φ) and FVD(φ). If either

sgn(φ) = sgn(X) and σX = ν or sgn(φ) ̸= sgn(X)

and σX = µ, then X ∈ FVI(φ). Otherwise,

X ∈ FVD(φ). Letters ‘I’ and ‘D’ stand for “in-

creasing” and “decreasing”, respectively, Then two

subsets SeqI(φ) and SeqD(φ) of Seq(φ) are defined
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by ξ ∈ SeqI(φ) if and only if ξ(idx(X)) = κ for

all X ∈ FVD(φ), and ξ ∈ SeqD(φ) if and only if

ξ(idx(X)) = κ for all X ∈ FVI(φ). The two sets

behave well, as shown in the next lemma.

Lemma 3. Assume s ∈ S. If ξ, η ∈ SeqI(φ)

and ξ < η, then iv(φ, ξ, s) ≤ iv(φ, η, s). If ξ, η ∈
SeqD(φ) and ξ < η, then iv(φ, ξ, s) ≥ iv(φ, η, s).

Proof. By easy induction on φ.

2. 3 Singular Variables

If there exists ξ ∈ SeqI(φ) such that iv(φ, ξ, s) ≥
n + 1, we denote the least such ξ by lseqI(φ, s, n),

otherwise lseqI(φ, s, n) is undefined. If there exists

ξ ∈ SeqD(φ) such that iv(φ, ξ, s) < n + 1, we de-

note the least such ξ by lseqD(φ, s, n), otherwise

lseqD(φ, s, n) is undefined.

A propositional variable X ∈ FVI(φ) is singular

in φ and s if the following conditions are satisfied.

• σX = ν. (Hence, sgn(φ) = sgn(X).)

• ξ = lseqI(φ, s,∞) is defined.

• ξ(l) is a limit ordinal, where l = idx(X).

• For all k ∈ N, there exists ηk ∈ SeqI(φ)

such that ηk � (l + 1) < ξ � (l + 1) and

iv(φ, ηk, s) ≥ k.

Lemma 4. Assume that X is singular in φ and s,

l = idx(X), and ξ = lseqI(φ, s,∞).

(1) If φ = Y ∈ PV and Y ≼ X, then X is sin-

gular in BFS(Y ) and s.

(2) φ is not in the form of ¬ψ.

(3) If φ = ψ1 ∨ ψ2, then for each of j = 1 and

j = 2, either X is singular in ψj and s, or

lseqI(ψj , s,∞) � (l + 1) < ξ � (l + 1).

(4) If φ = ψ1 ∧ ψ2, then X is singular in ψj

and s for either j = 1 or j = 2.

(5) If φ = ♢ψ, then for each t ∈ sR, either X is

singular in ψ and t, or lseqI(ψ, t,∞) � (l+1) <

ξ � (l + 1).

(6) If φ = �ψ, then either there exists t ∈
sR such that X is singular in ψ and t, or

there exist infinitely many t ∈ sR such that

ξt = lseqI(ψ, t, 0) is defined and ξt � (l + 1) <

ξ � (l + 1).

(7) If φ = σY ψ for some Y ≼ X, then X is

singular in ψ and s.

Proof.

(1) By the assumption, we have iv(Y, ξ, s) = ∞

and iv(Y, ηk, s) ≥ k. Let m = idx(Y ).

If σY = µ, then m ∈ FVD(φ) and

lseqD(BFS(Y )) = ξ � m. It is easy to check that X

is singular for BFS(Y ) and s, using ηk � (m+ 1).

If σY = ν, then lseqD(BFS(Y )) = ξ′ : α, where

ξ′ = ξ � m and either ξ(m) = α + 1, or ξ(m) = α

and α is a limit ordinal. To show that BFS(Y )

is singular, we can use ηk � m : βk, where either

ηk(m) = βk + 1, or ηk(m) = βk and βk is a limit

ordinal.

(2) We have 1 ≥ iv(φ, η1, s) < ∞ by leastness of

ξ. However, if φ = ¬ψ, the value of iv(φ, η1, s)

must be 0 or ∞.

(3) It is clear that iv(ψj , ξ, s) = ∞ and

iv(ψj , ηk, s) ≥ k for j = 1, 2. therefore, if

lseqI(ψj , s,∞) � (l + 1) = ξ � (l + 1), then ηk can

be used as evidences. Otherwise, the latter half of

the conclusion is satisfied.

(4) Let Vj = {iv(ψj , ηk, s) | k ∈ N} for j = 1, 2.

Because V1 ∪ V2 is unbounded, either V1 is un-

bounded or V2 is unbounded. Assume Vj is un-

bounded. It is easy to show that ξ = lseqI(ψj) and

ηk satisfies the necessary condition.

(5) This case can be shown by a similar argument

to (3).

(6) Let Vk = {t ∈ SR | iv(ψ, ηk, t) ≥ 1}. If∪
k∈N Vk is an infinite set, the second condition of

the conclusion is satisfied by taking ξt = ηk, where

t ∈ Vk. Otherwise, there is t ∈
∪
k∈N Vk such that

{iv(ψ, ηk, t) | k ∈ N} is unbounded. X is singular

in ψ and t for this t.

(7) There is α and βk for each k ∈ N such that

lseqI(ψ) = ξ : α and iv(φ, ηk, s) = iv(ψ, ηk : βk, s).

It is easy to check that X is singular using these

sequences.

3 Games

3. 1 Moves and Priorities

We define a parity game G played by Player and

Opponent. This game is used to decide whetherJφIK(sI) < nI + 1, for given sI ∈ S and nI ∈ N∞,

which we fix from now on. A vertex of the game is

in the form of (φ, s, n), where φ ∈ SF, s ∈ S, and

n ∈ {0, 1, . . . , nI,∞}. Thus, the set of vertices is fi-

nite if S is finite. However, in this paper. we do not

assume that S is finite. Let us define γ(φ, n) ⊆ N∞

by γ(φ, n) = {n′ ∈ N∞ | n′ < n + 1} if φ ∈ SF+

and γ(φ, n) = {n′ ∈ N∞ | n′ ≥ n+ 1} if φ ∈ SF−.
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Table 1 Moves at vertex (φ, s, n)

φ Side conditions Turn Moves

¬ψ — (either) (ψ, s,∞)

ψ1 ∨ ψ2 — Decreaser (ψ1, s, n) or (ψ2, s, n)

ψ1 ∧ ψ2 n <∞ (1) Decreaser m1,m2 ∈ N∞ such that m1 +m2 = n.

(2) Increaser (ψ1, s,m1) or (ψ2, s,m2)

ψ1 ∧ ψ2 n = ∞ Increaser (ψ1, s,∞) or (ψ2, s,∞)

♢ψ — Decreaser (ψ, t, n) for some t ∈ sR

�ψ n <∞ (1) Decreaser mt ∈ N∞ for each t ∈ sR, such that
∑
mt = n

(2) Increaser (ψ, t,mt) for some t ∈ sR

�ψ n = ∞ (1) Increaser Either (ψ, t,∞) for some t ∈ sR or infinite subset A ⊆ sR

(2) Decreaser (ψ, t, 0) for some t ∈ A, if A is selected in (1)

X σX = µ or n <∞ (either) (BFS(X), s, n)

X σX = ν and n = ∞ Decreaser (BFS(X), s,∞) or (BFS(X), s, 0)

σXψ — (either) (ψ, s, n)

Table 2 Priorities of vertex (φ, s, n)

φ Side conditions Priority (φ ∈ SF+) Priority (φ ∈ SF−)

BFS(X) σX = µ or n = ∞ 2kX + 1 2kX
BFS(X) σX = ν and n <∞ 2kX 2kX + 1

X σX = ν, n = ∞, and ∃ψ. X ≤ ¬ψ ≤ BF(X) 2kX + 2 2kX + 1

all others — 0 0

In particular, γ(φ,∞) is either N∞ \ {∞} or {∞},
depending on whether φ ∈ SF+ or φ ∈ SF−. The

intuitive meaning of vertex (φ, s, n) is “the value of

φ at s belongs to γ(φ, n).” Player tries to claim this

statement, while Opponent tries to rebut it. We

call Player “Decreaser” and Opponent “Increaser”

when φ ∈ SF+, and Player “Increaser” and Oppo-

nent “Decreaser” when φ ∈ SF−.

There are three types of end vertices:

• (p, s, n), where p is a propositional symbol. If a

play reaches here, Player wins if L(p) ∈ γ(p, n),

Opponent wins otherwise.

• (�φ, s, n), with sR = ∅. Player wins here.

• (♢φ, s, n), with sR = ∅. Opponent wins here.

The possible moves at other vertices are defined

in Table 1.

For each variable X, we assign kX ∈ N so that

kY < kX if BF(Y ) < BF(X). Then, the priority of

vertices is defined in Table 2. If a play is infinite,

Player wins if max{n | there are infinitely many i

such that n is the priority of the i-th vertex} is an

even number. Otherwise, Opponent wins.

3. 2 Strategy

We define a memoryless strategy for Player and

Opponent. Assume that the current position is

(φ, s, n).

First, we define ξ = lseqD(φ, s, n) for the strat-

egy of Decreaser and ξ = lseqI(φ, s, n) for the strat-

egy of Increaser. If ξ is not defined, then the cor-

responding player has no chance in winning, and

takes any legal move. In the following, we assume

that ξ is defined.

Case (φ = ¬ψ). There is no option to choose.

Case (φ = ψ1 ∨ ψ2). Decreaser selects (ψ1, s, n) if

iv(ψ1, ξ, s) ≤ iv(ψ2, ξ, s), and (ψ2, s, n) otherwise.

Case (φ = ψ1 ∧ ψ2 and n < ∞). Let m′
j =

iv(ψ1, ξ, s) for j = 1, 2. If m′
1 + m′

2 < n + 1, De-

creaser takesm1 = m′
1 andm2 = n−m1; otherwise,

he has no chance. Once m1 and m2 are selected, if

there is j ∈ {1, 2} such that m′
j ≥ mj+1, Increaser

selects (ψj , s,mj) for this j; otherwise, he has no

chance.

Case (φ = ψ1 ∧ ψ2 and n = ∞). If there is a vari-

able that is singular in φ and s, then let X be the

≺-least such variable. By Lemma 4 (4), there ex-

ists j ∈ {1, 2} such that X is singular in φj and s

Increaser selects (φj , s,∞) for this j. If there is

no singular variable, and there is j ∈ {1, 2} such

that iv(ψj , ξ, s) = ∞, Increaser selects (φj , s,∞)

for this j. Otherwise, he has no chance.

Case (φ = ♢ψ). Let t ∈ sR be the one that
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gives the least value of iv(ψ, ξ, t). Decreaser selects

(ψ, t, n).

Case (φ = �ψ and n < ∞). Let m′
t = iv(ψ, ξ, t)

for t ∈ sR. If
∑
m′
t ≤ n, Decreaser takes mt so

that mt ≥ m′
t and

∑
mt = n. otherwise, he has no

chance. Once mt is selected, if there is t ∈ sR such

that m′
t ≥ mt + 1, Increaser selects that (ψ, t,mt);

otherwise, either of the candidates is selected.

Case (φ = �ψ, and n = ∞). If there is a variable

that is singular in φ and s, then letX be the ≺-least

such variable and l = idx(X). By Lemma 4 (6),

either there exists t such that X is singular in ψ

and s, or there exists an infinite A ⊆ sR such that

lseqI(ψ, t, 0) � (l + 1) = ξ � (l + 1) for all t ∈ A.

Decreaser selects (ψ, t,∞) in the former case, and

A in the latter case.

In the case where there is no singular variable,

Increaser checks if there is t ∈ sR such that

iv(ψ, ξ, t) = ∞. If there is, he selects (ψ, t,∞) for

this t. If there is not, butA = {t ∈ sR | iv(ψ, ξ, t) ≥
1} is infinite, Increaser selects this A. Otherwise,

he has no chance.

If an infinite set A is selected by Increaser,

Decreaser checks if there is t ∈ A such that

iv(ψ, ξ, t) = 0. If there is, he selects (ψ, t, 0) for

this t. Otherwise, he has no chance.

Case (φ = X). If σX = µ or n < ∞, then there

is no options to select. Otherwise, i.e., σX = ν

and n = ∞, Decreaser selects (BFS(X), s, 0) if

iv(X, ξ, s) = 0, and selects (BFS(X), s,∞) other-

wise.

Case (φ = σXψ). There is no option to select.

That completes the definition of the strategy.

3. 3 Examples

Let K1 = (S1, R1, L1) be a Kripke structure de-

fined as follows:

• S1 = {s1, s2}
• R1 = {(s1, s1), (s1, s2)}
• L1(p, s1) = ∞, L1(p, s2) = 1.

Assume that the given formula φI is µX(p∨♢X),

and let φ0 = p ∨ ♢X. Following the definition, we

can compute some intermediate values iv(ψ, ξ, s) as

in Table 3. Thus, we know that JφIKK1(s1) = 1. Let

us see how Player and Opponent wins the game at

(φI, s1, 1) and (φI, s1, 0), respectively, by obeying

the strategy.

In the first game, the first vertex is (φI, s1, 1).

There is no options and the next vertex is

(φ0, s1, 1). Since Player obeys the strategy, he

calculate lseqI(φ0, s1, 1) and gets ξ = 1, because

iv(φ0, 1, s1) < 1 + 1 and iv(φ0, 0, s1) ̸< 1 + 1. Be-

cause φ0 = p∨♢X, it is Player’s turn. He computes

iv(p, 1(= ξ), s1) = ∞ and iv(♢X, 1, s1) = 1. There-

fore, he selects (♢X, s1, 1). Again, it is Player’s

turn. After confirming that ξ = lseqI(♢X, s1, 0) =

1, he compares iv(X, 1, s1) = ∞ and iv(X, 1, s2) =

1, therefore (X, s2, 1) is selected. The play contin-

ues like this, and finally, the game reaches (p, s2, 1).

Because L1(p, s2) = 1 < 1 + 1, Player wins in this

play.

In the second game, the first vertex is (φI, s1, 0)

and the second vertex is (φ0, s1, 0) as in the

first game. Here, opponent computes ξ =

lseqD(φ0, s1, 0). Because X ∈ FVD, SeqD is a sin-

gleton and its only element is κ, which, in this

game, can be any ordinal number greater than 0,

ξ = κ. However, Opponent does not have a chance

to use this ξ, because it is Player’s turn. Be-

cause Player does not obey the strategy, he can

select either of (p, s1, 0) or (♢X, s1, 0) as he likes.

Probably, he will select the latter, as otherwise he

would immediately lose this play. In each turn, as

in this turn, Player virtually has no option if he

avoids an immediate loss, and play continues for

ever as follows: (φI, s1, 0), (φ0, s1, 0), (♢X, s1, 0),

(X, s1, 0), (φ0, s1, 0), · · · . Among these vertices,

only (φ0, s1, 0) has a positive priority 1, which is

an odd number. (Here, we assume kX = 0, but any

other number also works in the same way.) There-

fore, Opponent wins.

As another example, let K2 = (S1, R1, L2),

L2(p, s1) = 1 and L2(p, s2) = 1. Assume φI =

νX(p ∧ �X), then JφIK(s1) = ∞ and Oppo-

nent wins the game starting (φI, s1,∞) by obey-

ing the strategy, in a similar manner as in the

Table 3 Intermediate Values on K1

ψ ξ iv(ψ, ξ, s1) iv(ψ, ξ, s2)

p 0 ∞ 1

X 0 ∞ ∞
♢X 0 ∞ ∞
φ0 0 ∞ 1

X 1 ∞ 1

♢X 1 1 ∞
φ0 1 1 1

φ0 2 1 1

φI ϵ 1 1



日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集 7

previous example. Let us now make a small

modification and assume that φI = νX(p ∧
¬♢¬X). It is easy to see that JφIKK2(s1) =

1. If Player obeys the strategy and Opponent

avoids an immediate loss, a play goes on as

follows: (φI, s1,∞), (φ2, s1,∞), (¬♢¬X, s1,∞),

(♢¬X, s1, 0), (¬X, s1, 0), (X, s1,∞), (φ2, s1,∞),

· · · , where φ2 = p ∧ ¬♢¬X = BFS(X). Ver-

tices that have positive priorities are (φ2, s1,∞)

and (X, s1,∞). The priorities of the former is 1

and the latter is 2. Therefore, Player wins the play.

3. 4 Invariants

Let (φi, si, ni)i<ζ be the vertices visited during a

play, where ζ is the length of a play, either a posi-

tive natural number or ω. In the rest of the paper,

we always assume the following:

• (φ0, s0, n0) = (φI, sI, nI).

• If JφIK(sI) < nI +1, Player obeys the strategy.

• If JφIK(sI) ≥ nI+1, Opponent obeys the strat-

egy.

We define ξi = lseqD(φi, si, ni) if either Player

obeys the strategy and φi ∈ SF+, or Opponent

obeys the strategy and φi ∈ SF−. Otherwise,

ξi = lseqI(φi, si, ni). In both cases, ξi is the one

that is used to decide the next move by the player

who obeys the strategy.

Lemma 5.

(1) If JφIK(sI) < nI + 1, then iv(φi, ξi, si) ∈
γ(φi, ni) for all i < ζ.

(2) If JφIK(sI) ≥ nI + 1, then iv(φi, ξi, si) ̸∈
γ(φi, ni) for all i < ζ.

(3) Unless φi ∈ PV, ξi+1 ≤ ξi.

(4) If φi = X ∈ PV, ξi+1 ≤ ξi � (idx(X) + 1).

Proof. Let ξ′ = ξi � (idx(X) + 1) if φi = X ∈ PV,

and ξ′ = ξi otherwise. To prove from (1) to (4),

what we need to show are the following:

• If JφIK(sI) < nI + 1, then iv(φi, ξ, si) ∈
γ(φi, ni) =⇒ iv(φi+1, ξ

′, si) ∈ γ(φi+1, ni+1).

• If JφIK(sI) ≥ nI + 1, then iv(φi, ξ, si) ̸∈
γ(φi, ni) =⇒ iv(φi+1, ξ

′, si) ̸∈ γ(φi+1, ni+1).

If i = 0, the conclusion follows from Lemma 1.

The (i+1) cases can be confirmed by checking each

step of the strategy. Here, we only show two cases.

The other cases can be shown in a similar manner.

Case (φi = ψ1 ∨ψ2 ∈ SF+). Let s = si = si+1 and

n = ni = ni+1.

First assume JφIK(sI) < nI + 1 and iv(φi, ξi, s) <

n + 1. Without loss of generality, we can as-

sume iv(ψ1, ξi, s) ≤ iv(ψ2, ξi, s). According to the

strategy, (φi+1, s, n) = (ψ1, s, n). That means

iv(φi+1, ξi, s) = iv(φi, ξi, s) < n+ 1.

Next assume JφIK(sI) ≥ nI+1 iv(φi, ξi, s) ≥ n+1,

and Player selects ψk. We have iv(ψk, ξi, s) ≥
iv(φi, ξi, s) ≥ n+ 1.

Case (φi = X ∈ SF−, BF(X) = νXψ, and

ni = ∞). Let s = si = si+1 and ξ′ = ξi �
(idx(X) + 1).

First assume that JφIK(sI) < nI + 1 and

iv(X, ξi, s) = ∞. By definition, we have

iv(ψ, ξ′, s) = ∞. In this case ni+1 = ∞ or ni+1 = 0,

depending on Opponent’s choice. But in either

case, we have iv(φi+1, ξ
′, s) = ∞ ≥ ni+1 + 1.

Next assume that JφIK(sI) ≥ nI + 1 and

iv(X, ξi, s) < ∞. Because ξi ∈ SeqD(X) and

X ∈ FVI(X), we have ξi(l) = κ. Therefore,

iv(ψ, ξ′, s) = iv(X, ξi, s). If iv(X, ξi, s) = 0, Op-

ponent selects (ψ, s, 0) and we have iv(ψ, ξ′, s) =

0 < 1. Otherwise, Opponent selects (ψ, s,∞) and

we have iv(ψ, ξ′, s) <∞.

3. 5 Infinite Plays

In order to analyze finite plays, Lemma 5 is suf-

ficient. From now on, until the end of this section,

we assume that plays are infinite, namely ζ = ω.

It is clear that the following lemma holds.

Lemma 6.

(1) There is a propositional variable X that oc-

curs infinitely many times as φi, that is, there

are infinitely many i ∈ N such that φi = X.

(2) If X and Y are propositional variables that

satisfy (1), then there exists propositional vari-

able Z that also satisfies (1), X ≼ Z, and

Y ≼ Z.

Therefore, for every play, there exists a ≺-

maximum propositional variable that occur in-

finitely many times as φi. We call it the principal

variable of the play and denote it by XP. The index

idx(XP) of the principal variable is denoted by lP.

Let ψP = BFS(XP).

Lemma 7. There exist IP ∈ N and ξP ∈ SeqψP

such that for all i ≥ IP,

• φi = X ∈ PV =⇒ X ≼ XP.

• ξi � (lP + 1) = ξP.

Proof. Clear from the definition of the principal
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variable and Lemma 5.

Lemma 8.

(1) If σXP = µ, then XP ∈ SF+ if and only ifJφIK(sI) ≥ nI + 1.

(2) If σXP = ν and there is no i ≥ IP such

that φi = XP and iv(XP, ξi, si) = ∞, then

XP ∈ SF+ if and only if JφIK(sI) < nI + 1.

(3) If σXP = ν and there exists i ≥ IP such

that φi = XP and iv(XP, ξi, si) = ∞, then

XP ∈ SF+ if and only if JφIK(sI) ≥ nI + 1.

Proof. We only prove the lemma when XP ∈ SF+.

The other case, XP ∈ SF−, can be shown in a sim-

ilar manner.

(1) Assume σXP = µ and JφIK(sI) < nI + 1. If

φi = XP, then ξi = lseqD(φi, si, ni). Therefore,

ξi � (lP + 1) > ξi+1. This cannot happen since

there are infinitely many such that φi = XP.

(2) Similar to case (1).

(3) Note that iv(XP, ξi0 , si0) = ∞ implies

iv(XP, ξi0 , si0) ̸∈ γ(∞) because XP ∈ SF+. There-

fore, JφIK(sI) ≥ nI + 1 by Lemma 5.

Lemma 9. Assume σXP = ν, i0 ≥ IP, φi0 = XP,

and iv(XP, ξi0 , si0) = ∞. Then, for all i ≥ i0,

there exists a variable X ≽ XP that is singular in

φi and si.

Proof. We prove the lemma by induction on i.

First, consider the case i = i0. Let α = ξi0(lP)

and ψ = BFS(XP). Since iv(XP, ξi0 , si0) = ∞,

α > 0. If α = β + 1, then by the definition of

iv, iv(ψ, (ξi0 � (lP + 1)) : β, si0) = ∞, and hence

ξi0+1 < ξi0 � (lP + 1), which contradicts i0 ≥ IP.

Therefore, α is a limit ordinal. For k ∈ N, let βk be

the least ordinal such that iv(ψ, ξi0 : βk, si0) ≥ k.

Again, since i0 ≥ IP, we have βk < α. Therefore,

by taking ηk = ξi0 :βk, we can confirm that XP is

singular in φi0 and si0 .

Next, the case i + 1. We assume that there is

a variable X ≽ XP that is singular in φi and si.

Depending on the form of φi, we can use the cor-

responding item of Lemma 4 to confirm that X

is also singular in φi+1 and si+1. Note that by

Lemma 4 (2), φi cannot be in the form of ¬ψ.

Also, because i ≥ IP and X ≽ XP, we cannot have

lseqI(·, ·,∞) � (l+1) < ξi � (l+1) appearing in the

conclusions of Lemma 4.

Lemma 10. Assume that σXP = ν and there is

I ≥ IP such that:

• iv(XP, ξI , sI) <∞.

• φi is not in the form of ¬ψ for all i ≥ I.

Then, there is J ≥ I such that iv(φi, ξi, si) = 0 for

all i ≥ J .

Proof. By checking the strategy, we can easily con-

firm that iv(φi, ξi, si) ≥ iv(φi+1, ξi+1, si+1) for all

i ≥ I. (Note that the negation operator does not

appear.) Therefore, there are J ≥ I and c < ∞
such that for all i ≥ J , iv(φi, ξi, si) = c. Without

loss of generality, we assume φJ = XP.

Let T = {i ≥ J | φi = X ∈ PV, σX = ν} and

U = {(i, η) | i ≥ J , η ∈ SeqD(φi), η � lP = ξP � lP,

and η ≤ ξi}. We prove that iv(φi, η, si) = 0 for all

(i, η) ∈ U . This is sufficient for the conclusion of

the lemma. We use induction: roughly, the order

of the induction for particular η is that the case

i ∈ T is shown first, and then cases i− 1, i− 2, . . .

are shown until i−k ∈ T ; and this cycle is repeated

with η increasing. Formally, the induction is per-

formed with the following well-founded relation W

on U : ((i, η), (i′, η′)) ∈ U if and only if either i ∈ T

and η < η′, or i = i′ + 1, i′ ̸∈ T , and η ≤ η′.

Case (φi = X ∈ PV and σX = ν). By the defini-

tion of iv(X, ·, ·) and induction hypothesis, we have

iv(XP, η, si) = 0.

Case (φi = X ∈ PV and σX = µ). Be-

cause iv(X, η, si) = iv(BFS(X), η, si), we have

iv(X, η, si) = 0 by induction hypothesis. Note that

BFS(X) = φi+1.

Case (φi = ψ1 ∨ψ2 or φi = ♢ψ). For the first half,

without loss of generality, we assume φi+1 = ψ1.

Then, iv(φi, η, si) ≤ iv(ψ1, η, si) = 0 by induction

hypothesis. The second half is similar.

Case (φi = ψ1 ∧ ψ2 or φi = �ψ). For the

first half, without loss of generality, we as-

sume φi+1 = ψ1. Then, c = iv(φi, ξi, si) =

iv(φi+1, ξi, si) + iv(ψ2, ξi, si) ≥ c + iv(ψ2, η, si).

Therefore, iv(ψ2, η, si) = 0. On the other hand,

iv(ψ1, η, si) = 0 by induction hypothesis. Thus,

iv(φi, η, si) = 0. The second half is similar.

Case (φi = σY ψ). In this case, Y ≺ X and for

some suitable ordinal number α, iv(φi, η, si) =

iv(ψ, η :α, si) = iv(φi+1, η :α, si+1) = 0 by induc-



日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集 9

tion hypothesis.

4 Equivalence

Now, we are ready to prove the main theorem.

Theorem 11. JφIK(sI) < nI + 1 if and only if

(φI, sI, nI) belongs to the winning region of Player.

Proof. It is sufficient to show the following two

claims.

• If JφIK(sI) < nI+1 and Player obeys the strat-

egy shown in the previous section, then Player

wins.

• If JφIK(sI) ≥ nI + 1 and Opponent obeys the

strategy, then Opponent wins.

By Lemma 5, these claims are correct for all fi-

nite plays, because iv(p, ξi, si) = L(p) for p ∈ PS,

and if siR = ∅, then iv(♢ψ, ξi, si) = ∞ and

iv(�ψ, ξi, si) = 0.

Assume we have an infinite play (φi, si, ni)i<ω.

Let XP, lP, IP and ξi be defined as in the previous

section. We only show when XP ∈ SF+; the other

case, XP ∈ SF−, can be shown in a similar argu-

ment. According to Lemma 8, we consider three

cases:

(1) σXP = µ.

(2) σXP = ν and there is no i ≥ IP such that

φi = XP and iv(XP, ξi, si) = ∞.

(3) σXP = ν and there exists i ≥ IP such that

φi = XP and iv(XP, ξi, si) = ∞.

In case (1), we have JφIK(sI) ≥ nI + 1 by

Lemma 8. Priority of the play is 2kXP +1, therefore

Opponent wins.

In case (2), we have JφIK(sI) < nI+1. If the nega-

tion operator appear infinitely many times, then

the priority of the play is 2kXP + 2 and Player

wins. Otherwise, by Lemma 10, φi = XP and

iv(φi, ξi, si) = 0 for some i. At this point, accord-

ing to the strategy, Player selects so that ni+1 = 0.

Therefore, the priority of the play is 2kXP , and

Player wins.

In case (3), we have JφIK(sI) ≥ nI + 1 By Lem-

mas 9 and 4 (2), the negation operator appears only

finitely many times in the play and iv(φi, ξi, si) =

∞ for all i ≤ IP such that φi = XP. Therefore,

the priority of the play is 2kXP + 1, i.e., Opponent

wins.

5 Conclusions

In this paper, we define a parity game between

Player and Opponent that characterizes the N∞ se-

mantics of the modal µ-calculus: we prove that the

value of a formula at a state in a Kripke structure is

smaller than an element of N∞ if and only if Player

has a winning strategy at the corresponding vertex

of the game. As future work, we plan to use the

game to build a decision procedure for satisfiability

of the modal µ-calculus under the semantics.
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