
1

日本ソフトウェア科学会第 26 回大会 (2009 年度) 講演論文集

Abstract Model Checking of Web Applications

Using Java PathFinder

Vinh Cuong Tran Yoshinori Tanabe Masami Hagiya

Due to the interleaving of clients and servers, verifying web applications is a hard task. Bugs may occur only

on particular scenarios, but testing all of them manually is almost impossible. To overcome the difficulty,

we propose a framework for source code model checking of web applications. We use abstraction techniques

to avoid state explosion. When model checking is conducted, various libraries including those for database

access are replaced with their abstract versions so that the code of the target application can be verified

without modification. Web clients are replaced with driver classes, which automatically generate possible

scenarios with the help of the model checker. In this paper, we report a first verification attempt based on

the proposed framework with a small web application built on the J2EE framework. We create abstract

classes for servlets, HTTP requests and responses, SQL result sets, and so on, and the driver is executed by

the model checker Java PathFinder to test all possible execution scenarios.

1 Introduction

With the rapid spread of the internet, more and

more systems have been re-engineered into web ap-

plications (WA), such as online banking systems

and e-payment systems. Since WAs are multi-

threaded by nature, model checking is a powerful

technique for verification of WAs. In this paper, we

propose a framework for verification of Java WAs

at the source code level. Specifically, we deal with

WAs that are implemented using the J2EE servlet

technology [2].

Although much work has been done on model

checking of WAs, most of the previous work focuses

on verifying the relationship among web pages in a

WA [7] [3].

MCWEB [3] models web pages in a WA with

a graph called webgraph. Every node in the web-

graph represents a web page with edges, each of

which is labeled with the name of a frame or an

Java PathFinder を用いたウェブアプリケーションの抽
象モデル検査

チャン ヴィンクオン, 田辺 良則, 萩谷 昌己, 東京大学大
学院情報理工学系研究科, Graduate School of Infor-

mation Science and Technology, The University of

Tokyo

anchor. MCWEB can analyze path properties of

pages in the WA, such as the connectivity of pages,

i.e., whether there is a path from every page to the

home page, and cost properties, e.g., the number of

pages to be downloaded.

The work by Donini, et al. [7] employs Computa-

tion Tree Logic to verify the design of a WA written

in UML using the SMV model checker [8].

In contrast to the above approaches, our frame-

work directly verifies Java implementation of a WA

using Java PathFinder (JPF), which is a general-

purpose extensible model checker for Java byte-

code [11]. When model checking is conducted,

various libraries including those for J2EE servlets

are replaced with their abstract versions, while the

source code of the WA is not changed. The abstract

versions of the servlet libraries automatically ana-

lyze possible links between servlets. Web clients

are replaced with driver classes, which automati-

cally generate possible scenarios with the help of

the model checker.

As far as we know, the most extensive work on

verification of WAs was done in the development of

the SAVE environment by Fujitsu Ltd [9]. In their

environment, a WA is model-checked together with

drivers and stubs, where the drivers are automati-

cally generated to cover a suitable set of user inter-

2 日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集

Fig. 1 WA deployed in the J2EE framework

actions and the stubs implement external functions

such as databases and file systems. Their verifica-

tion relies on symbolic execution of JPF, which was

recently introduced [4].

On the other hand, we only use the ordinary fi-

nite model checking of JPF, which is stable and

efficient. Abstraction is realized in the abstract

versions of libraries, including the drivers and the

stubs, e.g., the abstract library for database ac-

cess. For each kind of abstraction, we prepare the

abstract libraries that realize the abstraction. For

example, in the case study presented below, we re-

alize the specific-generic abstraction to verify the

behavior of a student in a report-submission web

application. In our framework, although the source

code of the WA is not changed, the entire applica-

tion can be model-checked using JPF, yielding a

finite state space.

2 Framework

The structure of a WA, which is implemented us-

ing the servlet technology, can be depicted as in

Figure 1. A WA basically consists of a set of

classes called servlets, which usually extend the

HttpServlet class in the J2EE framework. Clients

can access the WA, which is deployed in a web

server, through applications such as browsers and

applets. Between the WA and the web server is

the J2EE platform, which provides a container for

servlets [1]. The container provides environmen-

tal information in the web server, extracts inputs

from a client, and sends outputs to the web server

on behalf of servlets. Beside the libraries provided

by J2EE, the WA may use other libraries, e.g., the

JDBC for accessing a database management sys-

tem. All the application classes and framework

classes on the server side are executed by a nor-

mal Java Virtual Machine (JVM), which is usually

called host JVM.

Fig. 2 WA verified by Java PathFinder

When we verify the WA by JPF, we replace the

libraries in the J2EE framework and other libraries

including the library for database access with the

corresponding abstract libraries. Note that the

source code of the servlets of the WA is not touched

for verification.

We explain the abstract libraries used for the case

study in the next section. They realize the specific-

generic abstraction as we mentioned in the previous

section.

In order to verify a WA, it is necessary to cover

all possible scenarios of interactions between the

clients and the server. We gather the clients

(browsers), the HTTP server and the J2EE plat-

form in Figure 1 into one system, called the driver,

which simulates all (or more than) possible scenar-

ios between the clients and the server, and behaves

as the abstract container, by calling the servlets of

the WA and interpreting (abstract) outputs from

the servlets.

The entire system is then executed for verifica-

tion on a customized JVM, which is a part of JPF.

In summary, the proposed framework uses Java

as the only language both for implementation and

abstraction, and uses JPF as the only tool. We

hope that this monolithic nature will make the

framework practical.

3 Case Study

To show the rationale behind our approach,

we choose to verify a simple real-world report-

submission system. The system allows students to

submit reports, and a teacher to grade submitted

reports. Students’ data and submitted reports are

stored in a database table. After login, the teacher

gets a list of reports which have been submitted

but not graded. The fragment of code in Listing 1

is an implementation of a servlet that displays the

日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集 3

Listing 1 A fragment of a teacher’s servlet

public class TeacherHomeServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request ,

HttpServletResponse response)

throws ServletException , IOException {

response.setContentType("text/html;charset=UTF -8");

PrintWriter out = response.getWriter ();

try {

out.println("<html >");

out.println("<head >");

out.println("<title先生のページ></title >\n");

out.println("</head >\n");

out.println("<body >\n");

out.println("<h2> 先生のページ</h2 >\n");

try {

String query="SELECT S.stuid FROM stmana S "

+ "WHERE S.grade=’-1’";

Object flag = getServletContext (). getAttribute("flag");

if (flag != null && (Boolean)flag) {

ResultSet result = executeQuery(query);

while (result.next ()) {

String stuid = result.getString (1);

out.println("<a href =\""

+response.encodeURL("gradeReport?sid="+stuid)

+"\">"+stuid+"
");

}

out.println("
");

result.close ();

}

else{

out.println("レポートが提出されていません
\n");

}

out.println("<a href =\""

+ request.getContextPath ()

+ "/logoutログアウト\">
\n");

out.println(" </body >");

out.println(" </html >");

} finally {

out.close ();

}

} catch (SQLException ex) {

Logger.getLogger(TeacherHomeServlet.class.getName ())

.log(Level.SEVERE , null , ex);

}

}

protected void doGet(HttpServletRequest request ,

HttpServletResponse response)

throws ServletException , IOException {

processRequest(request , response);

}

protected void doPost(HttpServletRequest request ,

HttpServletResponse response)

throws ServletException , IOException {

processRequest(request , response);

}

public String getServletInfo () {

return "Teacher Home servlet";

}

}

reports that have not been graded.

Beside the default detection of JPF for deadlocks,

uncaught exceptions, etc., we want to check if there

is any student whose report is not graded when

the student list displayed to the teacher is empty

and all students have finished submission. To re-

duce the size of state space significantly without

overlooking possible bugs, we employ the specific-

generic abstraction explained in the next section.

4 Abstraction

Abstraction is not only useful but also crucial in

model checking [5], because it can reduce an infi-

nite state space into a finite one. In this work, we

apply abstraction to the driver and the libraries in

the J2EE framework and for database access.

4. 1 Specific-Generic Abstraction

In the report-submission system, since there can

be any number of students who submit reports and

there can be any number of reports submitted, the

state space of the system is virtually infinite with-

out abstraction.

The specific-generic abstraction is a method that

focuses on one particular element of a set, which is

called the Specific object, and maps the remaining

elements to one object, which is called the Generic

object. In the report-submission system, we want

to check if there exists any student whose report

has been submitted but has not been graded yet.

The specific-generic abstraction is applicable be-

cause the specific student that the method focuses

on is represented by the Specific Object, while other

students are represented by the Generic object. A

set of students is then abstracted to a set of the

Specific object and the Generic object.

4. 2 Abstract classes in the report-

submission system

Whenever the teacher queries for reports that have

not been graded, there are two possible cases. The

first case is that the specific student has not submit-

ted a report, or the report of the specific student

has already been graded. Thus the result of the

teacher’s query does not contain the report of the

specific student. The second case is that the spe-

cific student has submitted a report and the report

has not been graded yet. In both cases, the generic

student may or may not have submitted a report.

Thus, we need only two states as the contents of

the abstract version of the database.

The (concrete) database access class is abstracted

to a class, which has the same interface as the con-

crete one. The executeQuery method of the ab-

stract database access class checks whether a query

is UPDATE, INSERT or SELECT, and then takes

appropriate actions on the database. For a SE-

LECT query, one of the two objects of a class im-

plementing the java.sql.ResultSet interface is re-

turned. Each object corresponds to the two states

of the database. The object is then returned to

the servlet that makes the SELECT query. Since

4 日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集

Listing 2 A class implementing ResultSet

public class ResultSetWSpecific implements ResultSet {

enum State {BOTH , GENERIC_ONLY , EMPTY };

private State curState;

private String returnString;

public ResultSetWSpecific () {

this.curState = State.BOTH;

this.returnString = null;

}

public String getString(int columnIndex) {

if (columnIndex > 1)

assert false;

return returnString;

}

public boolean next() throws SQLException {

boolean ret = curState != State.EMPTY;

switch (curState) {

case BOTH:

int nextState = Verify.getInt (0 ,2);

switch (nextState) {

case 0:

returnString = genericString;

break;

case 1:

returnString = specificString;

curState = State.GENERIC_ONLY;

break;

case 2:

returnString = specificString;

curState = State.EMPTY;

break;

default:

assert false;

}

break;

case GENERIC_ONLY:

if (Verify.getInt (0,1) == 0) {

} else {

curState = State.EMPTY;

}

returnString = genericString;

break;

case EMPTY:

returnString = null;

break;

}

return ret;

}

}

these abstract classes conform to the J2EE API, we

do not need to rewrite the source code of the WA.

Listing 2 shows one of the classes that implement

the ResultSet interface.

After receiving the abstract result of the query,

the servlet calls the next method on the result to

retrieve its elements. Each element contains a stu-

dent as the owner of the report, and the student

is determined by a transition system depicted in

Figure 3.

The servlet then generates the output to the

client by calling the print and println methods

on the writer associated with the response of the

servlet. The writer class is also replaced with an ab-

stract class for verification. The print and println

methods of the abstract class parse the output on-

the-fly to get the relevant information for building

the input to the next servlet.

Unimportant inputs to servlets are abstracted

to a dummy string, and outputs from servlets are

parsed on-the-fly as explained above and imme-

Fig. 3 Transition System of Abstract Student

Set.

diately discarded after relevant information is ob-

tained.

5 Result

We prepared two versions of the application. In

one version, a bug was implemented so that in

some sequences of submission, a report may not

be graded by the teacher. In the other version, the

bug was fixed. Our system detected the bug in the

first version almost immediately.

For the second version, the model checker ran for

four minutes and thirty-four seconds to explore all

2360 states, and reported that there was no bug re-

mained. The experiment was conducted on a lap-

top PC with PentiumM 1.7GHz CPU with 1GB

memory.

6 Future work

Through the case study, we have identified several

pieces of work that are needed to be done before

model-checking real-world WAs in the proposed ap-

proach.

In the case study, scenarios of interactions be-

tween the clients and the server are generated, as

the output from a servlet is parsed to build the in-

put to the next servlet. Although the generation of

scenarios was automatic, their coverage depended

on an initial setting, which specifies the order of ex-

ecution of servlets, the number of threads, and so

日本ソフトウェア科学会第 26回大会 (2009年度)講演論文集 5

on. Methods to help define an appropriate initial

setting need to be investigated.

As for abstraction, we need to identify and pro-

vide those kinds of abstraction that are useful for

verifying WAs. Automation of abstraction is also

possible as in Bandera [6]. In particular, we need

a method to automatically abstract a database

by specifying how to abstract attributes of the

database.

In the current framework of abstraction, in which

concrete classes are replaced with abstract classes,

we need to replace basic data with objects in or-

der to apply abstraction to them. We can also use

symbolic execution of JPF for integers [4].

However, even more and more advances are made

in abstraction, it is not possible to verify all existing

WAs in our framework. Instead, we plan to provide

a well defined set of concrete/abstract libraries to-

gether with design patterns of WAs, so that WAs

developed by the design patterns can be verified

with the abstract libraries without modification of

their source code.

In our previous work, we implemented the LTL

library to make it possible to verify LTL properties

using JPF [10]. We can immediately apply our LTL

library to the proposed framework to verify liveness

properties of such as “if a student submitted report,

then that report will eventually be graded”. We can

also use the LTL library to avoid errors caused by

lack of fairness in thread scheduling.

References

[1] Java platform, enterprise edition. http://java.

sun.com/javaee/technologies/javaee5.jsp.

[2] Java servlet technology. http://java.sun.com/

products/servlet/.

[3] Luca De Alfaro. Model checking the world wide

web. In Computer Aided Verification, pages 337–

349. Springer-Verlag, 2001.

[4] Saswat Anand, Corina Pasareanu, and Willem

Visser. JPF–SE: A symbolic execution extension to

java pathfinder. In TACAS, volume 4424 of LNCS,

pages 134–138. Springer, 2007.

[5] Edmund M. Clarke, Orna Grumberg, and

David E. Long. Model checking and abstraction.

ACM Transactions on Programming Languages and

Systems, 16(5):1512–1542, September 1994.

[6] James C. Corbett, Matthew B. Dwyer, John

Hatcliff, Shawn Laubach, Corina S. Pasareanu,

Robby, and Hongjun Zheng. Bandera: Extracting

finite-state models from java source code. In In Pro-

ceedings of the 22nd International Conference on
Software Engineering, pages 439–448. ACM Press,

2000.

[7] Francesco M. Donini, Marina Mongiello, Michele

Ruta, and Rodolfo Totaro. A model checking-based

method for verifying web application design. Electr.

Notes Theor. Comput. Sci., 151(2):19–32, 2006.

[8] K. L. McMillan. The SMV system. http:

//www.cs.cmu.edu/∼modelcheck/smv.html.

[9] Sreeranga P. Rajan, Indradeep Ghosh, Oksana

Tkachuk, Mukul R. Prasad, Praveen K. Murthy,

Ryusuke Masuoka, Tadahiro Uehara, Kazuki Mu-

nakata, Kenji Oki, and Hirotaka Hara. Software ap-

plications validation environment: SAVE. In Fujitsu

Scientific & Technical Journal (FSTJ), volume 43,

2007.

[10] Vinh Cuong Tran, Hideki Hashimoto, Yoshinori

Tanabe, and Masami Hagiya. Verification of java

programs under fairness assumption. In 25th Japan

Society of Software Science and Technology Annual

Symposia, 2008.

[11] Willem Visser, Klaus Havelund, and Guillaume

Brat. Model checking programs. In Automated Soft-

ware Engineering Journal, pages 3–12, 2000.

