
日本ソフトウェア科学会第 25回大会（2008年度）論文集 1

Verification of Java programs under fairness assumption

Vinh Cuong Tran, Hideki Hashimoto, Yoshinori Tanabe and Masami Hagiya

Graduate School of Information Science and Technology

The University of Tokyo

In this paper, we propose a method to verify Java programs under fairness assumption. Our fairness

definition is described by Linear Time Temporal Logic (LTL) with propositions which express the facts

that a thread can be selected to run and that it is actually executed. We have implemented the method

as a library of Java PathFinder, an explicit-state model checker.

1 Introduction

Model checking is a technique for formally ver-
ifying finite-state concurrent systems. Model
checking can be applied to both hardware and
software, such as concurrent programs, to deter-
mine the validity of one or more properties of
interest. Correctness properties which we want
to model-check about concurrent programs fall
into two broad classes : “safety” and “liveness”
[4]. Safety properties, also known as “invariance”
properties, intuitively assert that “nothing bad
happens”. Liveness properties are also referred to
as “eventuality” properties or “progress” proper-
ties. Intuitively, a liveness property asserts that
“something good will happen”.

In this work, we focus on verifying liveness prop-
erties of Java programs. When liveness proper-
ties on concurrent systems are verified, it is often
necessary to assume that the scheduling is fair.
Therefore, we propose a definition of fairness in
Java, and then implement a library that verifies
properties based on the definition. Specifically, we
have extended Java PathFinder (JPF) [1], a Java
program model checker, for the purpose.

Our definition of fairness is based on Java virtual
machine specification. In particular, it is defined
based on the specification of lock and notification
mechanisms of Java virtual machine (JVM). Fur-
thermore, fairness assumption is expressed by us-
ing Linear Time Temporal Logic (LTL).

The rest of the paper is structured as follows.
Section 2 gives formalization of fairness. Section 3
shows how verification of LTL formulae can be re-
alized in JPF. Some verification examples and re-
sults are given in Section 4. Conclusion and future
work are given in Section 5.

2 Fairness in Java programs

In this section, we give a definition of fairness
for Java source code model checking.

There are three well-known definitions of fair-
ness: unconditional fairness, weak fairness, and
strong fairness [4]. The unconditional fairness, ex-
pressed by ¤♦(thread runs) in LTL, holds if ev-
ery thread runs infinitely often. In Java programs,
this kind of fairness is easily made false by having
one thread loop infinitely after getting the com-
mon lock. Therefore, unconditional fairness is not
appropriate for our purpose .

Weak fairness prohibits a case in which a
thread is continuously enabled but is not exe-
cuted. It is expressed as ¤♦((thread is enabled) →
thread runs) in LTL. However, in Java, this is a
too weak assumption. Consider a case in which
two threads T1 and T2 run in infinite loops and
they compete for a lock. A scheduling that allows
T1 to acquire the lock every time is intuitively un-
fair. However, the weak fairness assumption does
not exclude the scheduling, since T2 is not con-
tinuously enabled. In fact it is disabled when T1
acquires the lock.

The remaining fairness, strong fairness, is ex-
pressed by ¤♦thread is enabled → ¤♦thread runs.
It means if a thread is enabled infinitely often, it
is executed infinitely often. It is the only fairness
definition that can be employed for our purpose.

Now we investigate how the conditions thread is
enabled and thread runs are to be defined. The
definition of the latter should be clear, so we dis-
cuss the former.

Fairness is a condition on how threads are se-
lected by the scheduler. In our framework, the
scheduler selects a thread in the following three
occasions.

1. Execution: since we work on the interleaving
model, program execution is a loop in which
the scheduler selects an enabled thread, which
then executes an atomic operation.

2. Lock acquisition: if two or more threads com-
pete for a lock, one of the threads is selected
to acquire the lock.

3. Notification: if a notify() is issued by a thread



日本ソフトウェア科学会第 25回大会（2008年度）論文集 2

Fig. 1 Transition of thread statuses

Table. 1 Thread statuses

status description
RUNNING running
BLOCKED blocked with requesting a lock

UNBLOCKED the lock on which the thread was blocked is released
WAITING issued wait()

TIMEOUT WAITING issued wait() with timeout
TIMEDOUT wait() was timed out
NOTIFIED notified by notify() or notifyAll()

INTERRUPTED wait() was interrupted
UNBLOCKED INTERRUPTED wait() was interrupted and the lock was released

UNNOTIFIED notify() was issued but the thread was not selected
UNNOTIFIED TW notify() was issued but the thread was not selected

that locks an object, and if two or more
threads wait on the object, then one of the
threads is selected to be notified.

The specification of JVM [8] defines the sec-
ond and the third types of selections, and the first
type of selection is due to our interleaving model.
We investigate which thread is enabled for each
of three types of selections by the scheduler listed
above. As a basis of the investigation, we use the
set of thread statuses in JPF. They are shown in
Table 1 and Figure 1.

For the first type of selection, enabled threads
have status RUNNING.

The second type is the lock acquisition. When
a thread locks an object, the status of the locking
thread is unchanged – it is RUNNING –, but the
other threads that competed for the lock becomes
BLOCKED. When the locking thread releases the
lock, the thread status of the other threads is

changed to UNBLOCKED, and they have a chance
to acquire it. Therefore a thread can be regarded
as “enabled” with respect to the second type of
selection, if its status is either UNBLOCKED or
RUNNING.

When the third type of selection takes place,
only one waiting thread is notified. In JPF, the
chosen thread changes its status to NOTIFIED,
and continues to change to UNBLOCKED sta-
tus when the monitor is released. The remaining
threads that were not notified are kept in WAIT-
ING status. Although they were intuitively “en-
abled” when notify() is called, we cannot recognize
this situation by observing their statuses defined
so far. Therefore we introduce a new status called
“UNNOTIFIED”. The status of a waiting thread is
changed to UNNOTIFIED when notify() is called,
and it goes back to WAITING immediately after
that. Thus, we can detect the thread has been



日本ソフトウェア科学会第 25回大会（2008年度）論文集 3

enabled.
Similarly, we introduce a new status

called “UNNOTIFIED TW” for the status
TIMEOUT WAITING. The two new statuses are
depicted as red rectangles in Figure 1.

The waiting threads can be interrupted, and
change its status to INTERRUPTED. Then,
when the lock is released its status becomes
UNBLOCKED INTERRUPTED, and it is
ready to be scheduled again. Therefore, UN-
BLOCKED INTERRUPTED should be taken
similarly as UNBLOCKED.

In summary, we define the fairness condition
now as ∧

t∈Threads

(¤♦et → ¤♦rt)

where
et = RUNNING ∨ UNBLOCKED ∨ UN-

BLOCKED INTERRUPTED ∨ UNNOTIFIED ∨
UNNOTIFIED TW for thread t, and

rt = thread t actually runs.

3 LTL model checking under Java

PathFinder
3.1 Java PathFinder

Java PathFinder is an explicit-state software
model checker for Java bytecode. It takes as in-
put a Java program, then searches for deadlocks
and unhandled exceptions by default. But users
can provide own property classes, or interfaces to
verify other properties. The default search engine
of JPF is only for verifying safety properties. We
have to develop a new search engine for verifying
liveness properties.

Our purpose is to verify liveness under fairness
assumption, so we have two options. The first one
is to develop a specialized algorithm for the pur-
pose. The other option is to use LTL verifier. The
first option will give more efficient implementation,
but take more time to develop. The second option
is more powerful since we can also verify a large
class of LTL formulae, but is not efficient in gen-
eral. We have chosen the second option, since we
can use source code from our LTL verifier project.

3.2 Algorithm of LTL model checking in
JPF

We employed the algorithm [7] for our search
engine. It first builds finite-automaton on infinite
words for the negation of the formula f . The re-
sulting automaton is A¬f . Then, it computes the
automaton for the program P . Finally, it checks if
the language of the product of the two automata
is empty. An acceptable run of the product is a

counterexample of the property.
The algorithm [7] for checking satisfaction of

LTL formula includes two depth-first searches
(DFSs) as shown in Algorithms 1 and 2.

local q′ ;
hash(q) ;
forall successors q′ of q do

if q′ not in the hash table then
outer-dfs (q′) ;

end
if accept(q) then inner-dfs (q);

end
Algorithm 1: outer-dfs(q)

local q′;
flag(q);
forall successors q′ of q do

if q′ on outer-dfs stack then
terminate (True);

else if q′ not flagged then
inner-dfs (q′);

end
end

Algorithm 2: inner-dfs(q)

When the outer DFS is ready to backtrack from
an accepting state after completing the search of
its successors, the inner DFS will begin to find
a loop through this state. In case that the in-
ner DFS fails to find a loop, the outer DFS re-
sumes from the point where it was interrupted.
The terminate(True) is called when the loop has
been found.

JPF provides forward() and backtrack() meth-
ods of the parent class Search for implement-
ing customized search engine. When forward() is
called it will check if there is any successor that has
not been explored, and return true if it is the case.
The information about which successors have been
visited is contained in an object called ChoiceGen-
erator. Each program state is visited only once in
the original search engine of JPF. That is not the
case for the algorithm we use. In particular, when
the inner search starts, we need to explore the suc-
cessors of a state which the outer DFS has just fin-
ished exploring. In order to do this, we manage to
reset the ChoiceGenerator object so that it repeats
exploration.

3.3 Implementation
In order to implement the algorithm described

in Section 3.2, we have used LTL2BA4J [3], a ver-
sion of ltl2ba [2] for Java. ltl2ba is a tool written



日本ソフトウェア科学会第 25回大会（2008年度）論文集 4

in ANSI C, based on paper [5], which allows con-
version of formulae in the Linear Time Temporal
Logic to Büchi automata.

In theory, each state of Kripke structure has an
associated set of propositions, which are true at
that state. In JPF, the states are of programs only
generated when nondeterminism encountered, so
that it is difficult to determine when a new state
is created.

We have to determine the truth values of propo-
sitions when a new state is created. If the value of
a proposition can be determined from the informa-
tion of the current state of system, there should be
no problem. But we need to enable propositions
whose values depend on history. This is because
the states are only sparsely created. For exam-
ple, if we want to express ¤(method1() is called),
we need to have a proposition that becomes true
when method1() has been called since the previous
state was created. Therefore, we have to keep track
of the execution of the program from the previous
state to the current state. Also the value of such
a proposition has to be reset whenever the execu-
tion from the current state begins, otherwise, the
value of the proposition of the next state will be
the same as that of the previous state.

We created an interface called Proposition, and
each proposition will implement this interface to
specify what the proposition is about. Some of the
methods of the interface are getValue() method,
for search engine to get the value of proposition,
and reset() method for resetting the proposition as
described above. In order to ease the implementa-
tion of propositions, we also provided Proposition-
ListenerAdapter that implemented all the methods
of interface Proposition. The name of the propo-
sition, e.g. p, q, is mapped with the name of the
class in configuration file, such as in Figure 2. The
formula to be verified is also specified in the con-
figuration file.

A sample of implementation of proposition is
given in Figure 3 and 4. The source in Figures 3
and 4 illustrate how to implement proposition e
(thread is enabled), and r (thread run), in our def-
inition of fairness. These two classes are provided
as built-in classes. The user only have to provide
implementations for the propositions in liveness
properties, which can be implemented the same
way as those of Figure 3 and 4. Although, we have
defined the fairness condition for all threads of the
program, in Figure 3, we only specified the enabled
condition for thread 1.

Generally speaking, LTL model checking as-
sumes that the transition system under verifi-
cation does not has end states. However, nat-
urally, some Java programs terminate, meaning

Fig. 2 Configuration file

Fig. 3 Sample implementation of e proposition

their state space have end states. We avoid this
problem by adding a self loop to each end state.

4 Model checking results
In this section, we provide two sample programs

to test the two selections of fairness. In both sam-
ples, we verify a liveness property which asserts
that “whenever a thread requests a lock, it will
eventually acquires the lock”. The first sample in
Figure 5 (called sample 5) is for testing strong fair-
ness of JVM’s lock mechanism, where a synchro-
nized statement is used for the lock. The second
sample in Figure 6 (called sample 6) is used to ver-
ify the strong fairness assumption of notification
mechanism, where wait() and notify() are used.

In the two samples, we use Verify.getInt(int min,



日本ソフトウェア科学会第 25回大会（2008年度）論文集 5

Fig. 4 Sample implementation of r proposition

int max). Verify.getInt(int min, int max) is a
method of the Verify class that is included in JPF.
It returns an integer nondeterministically between
(and including) min and max. Therefore, when
search engine encounter this statement, the new
program state will be created for each number.

Sample 5 has two threads trying to call method
acquireLock() after calling requestLock(). acquire-
Lock() and requestLock() are just two dummy
methods created for testing liveness properties.
Verify.getInt(0,1) will return number 0 or 1, and
just when 0 is returned the thread can execute the
body of run(). There is a case that when c in both
threads equals 0, and both threads compete for the
implicit lock. If fairness is not assumed, the error
will be reported.

Also in sample 5, if we uncomment the while
loop in aquireLock, we have another test sample.
This test sample creates a situation in which one
thread will loop forever in the uncommented loop,
so that it has an error even if fairness was assumed.

Sample 6 is different from sample 5 only in noti-
fication mechanism is used. In sample 6 a thread
will get in a wait set and wait until it is notified.
If no fairness is assumed, there is possible that one
thread will wait forever.

We performed a test with out current implemen-
tation. The results are shown in Table 2. All re-
sults are as expected.

5 Conclusion and future work
5.1 Conclusion

The main contribution of this work is twofold.
We have proposed a definition of fairness in Java,

Fig. 5 sample program for demonstration the
fairness of synchronized structure

and implemented a library with which the user can
verify properties under fairness assumption based
on the definition.

Our definition of fairness covers selections of
thread in competing locks and in notification.

5.2 Future work
Although we confirmed that our definition of

fairness worked fine with sample programs, we
should further apply it to real programs. For
that purpose, more efficient implementation will
be needed.

Verification under strong fairness assumption is
not so efficient that it is desirable to avoid the
assumption. One of the idea to achieve that is
to use an alternative library for lock, unlock, and
notify, which implements them in first-in first-out
manner. In such an implementation, weak fairness
and strong fairness conditions coincide, therefore it
should be able to apply known efficient algorithms
for weak fairness.

References

[1] Java pathfinder. http://javapathfinder.

sourceforge.net/.



日本ソフトウェア科学会第 25回大会（2008年度）論文集 6

Fig. 6 Sample program for demonstration the fairness of notification



日本ソフトウェア科学会第 25回大会（2008年度）論文集 7

¤(requestLock → ♦acquireLock) (¤♦e → ¤♦r) →
¤(requestLock → ♦acquireLock)

sample 5 error satisfied
sample 5 with
acquireLock() error error
contains infinite loop
sample6 error satisfied

Table. 2 Model checking results

[2] ltl2ba. http://www.lsv.ens-cachan.fr/

~gastin/ltl2ba/index.php.

[3] Ltl2ba4j. http://www-i2.informatik.

rwth-aachen.de/Forschung/RV/ltl2ba4j/

index.html.

[4] E. Allen Emerson. Temporal and modal logic. In
Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Sematics (B), pages
995–1072. North-Holland Pub. Co./MIT Press,
1990.

[5] Paul Gastin and Denis Oddoux. Fast LTL to
Büchi automata translation. In Gérard Berry, Hu-
bert Comon, and Alain Finkel, editors, Proceed-
ings of the 13th International Conference on Com-
puter Aided Verification (CAV’01), volume 2102 of
Lecture Notes in Computer Science, pages 53–65,
Paris, France, July 2001. Springer.

[6] Dimitra Giannakopoulou, Jeff Magee, and Jeff
Kramer. Fairness and priority in progress prop-
erty analysis, 1999.

[7] Gerard Holzmann, Doron Peled, and Mihalis Yan-
nakakis. On nested depth first search. In In The
Spin Verification System, pages 23–32. American
Mathematical Society, 1996.

[8] Tim Lindholm and Frank Yellin. The java vir-
tual machine specification. Website, 1999. http:

//java.sun.com/docs/books/jvms/.


