
Modal µ-calculus on min-plus algebra N∞
∗†

Dai IKARASHI‡ Yoshinori TANABE‡,§ Koki NISHIZAWA¶ Masami HAGIYA‡,∥

‡: Graduate School of Information Science and Technology, The University of Tokyo
§: Research Center for Verification and Semantics,

National Institute of Advanced Industrial Science and Technology (AIST)
¶: Tohoku University

∥: NTT Communication Science Laboratories

Abstract

We give an interpretation of modal µ-calculus using
min-plus algebra N∞, the set of all natural num-
bers and infinity ∞. Disjunctions are interpreted
by min, and conjunctions by plus．By this inter-
pretation, simple formulas can express the shortest
path on a Kripke structure, the number of states
that satisfy a specified condition, etc. In this paper,
we define the semantics of modal µ-calculus on min-
plus algebra, and then describe a model checking al-
gorithm for the semantics and its implementation．
Although simple iterative computation of a least
fixed point in general does not terminate in N∞,
thanks to abstraction, we can make model checking
possible by reducing least fixed point computation
to greatest fixed point computation. In addition，
we try to apply the semantics to data flow analysis
for compiler optimization．Finally, we discuss rela-
tionship between our semantics and the theory of
Kripke structures on complete Heyting algebra．

1 Introduction

Modal logic can express various kinds of properties
on Kripke structures. Especially, modal µ-calculus,
which has fixed point operators, can express vari-

∗This research has been partially conducted in the re-
search project “Solving the description explosion problem in
verification by means of structure transformation” in the re-
search area “New High-performance Information Processing
Technology Supporting Information-oriented Society” un-
der Core Research for Evolutional Science and Technology
(CREST) of Japan Science and Technology Agency.

†This research has been partially supported by Grant-
in-Aid for Scientific Research by Ministry of Education,
Culture, Science and Technology , Scientific Research(C)
(2)18500003, “Abstraction of graphs to multisets using tem-
poral logic”.

ous crucial properties on Kripke structures, such
as reachability and existence of infinite paths, ac-
curately and simply by formulas [5].

To enhance expressiveness of this modal logic,
some research has been conducted to define seman-
tics that interprets formulas on algebra that has
richer structures than those in the ordinary seman-
tics, i.e., the semantics that interprets formulas as
true or false.

For example, in order to formalize multiplexed
model checking, Nishizawa et al. investigated the
simulation relation, the relation between state for-
mulas and path formulas, etc. on extended Kripke
structures that assign elements of complete Heyting
algebra as truth values to propositions and transi-
tion relations in contrast to the ordinary Boolean
algebra {0, 1} [4, 7]．

In this paper, we propose semantics of modal µ-
calculus that interprets disjunctions by min, and
conjunctions by plus. By using plus, one can com-
pute or count quantitative measures. As an algebra
with plus, we have adopted min-plus algebra. Al-
gebraic structures that have two binary operators,
min and plus, are generally called min-plus algebra,
and have been widely used for analysis of discrete
event systems, optimization, etc. [1]. Especially, an
algebraic structure that has the following proper-
ties is called a dioid:

• min is associative and commutative,
• plus is associative and distributes over min,
• ∞ is zero element with respect to min,
• zero element ∞ is absorptive with respect to

plus,
• plus has unit element 0, and
• min is idempotent.

In addition, if

• plus is commutative,

then it is called a commutative dioid. The algebra
N∞ that consists of all natural numbers N, includ-
ing 0, and infinity ∞ is a commutative dioid. In
this paper, we define how to interpret modal logic
formulas on this algebra N∞. A dioid is also known
as an idempotent semiring: it satisfies the require-
ments for a ring except for the existence of inverse
elements with respect to min. The algebra that
consists of all real numbers (or all integers) and in-
finity ∞ is an idempotent commutative semifield:
inverse elements with respect to plus exist except
for ∞.

We briefly introduce the semantics proposed in
this paper. As mentioned above, we interpret dis-
junctions by min, and conjunctions by plus, so the
typical element that represents truth in N∞ is 0,
and ∞ represents falsity. Finite elements other
than 0 are also considered to represent truth, i.e.,
there are various levels of truth.

For example, think of the following modal logic
formula.

µX(a ∨ ⟨f⟩(1 ∧ X))

This formula contains as a subformula the propo-
sition symbol 1 that is always interpreted as the
element 1 of N∞.

As we explain in the next section, each element
of N∞ is allowed as a formula and interpreted as
itself. And because ∧ is interpreted by plus, the
formula 1∧X is interpreted as the result of adding
1 to the interpretation of X．

The formula contains the modal operator ⟨f⟩. In
the ordinary semantics, a formula of the form ⟨f⟩φ
holds at a state s if and only if there exists a state s′

which is reachable in one step from s by the modal-
ity f , and φ holds at s′. In a Kripke structure, each
modality f is given a one-step reachability relation
for interpreting the modal operator ⟨f⟩.

Since the interpretation of ⟨f⟩φ is thought to be
the disjunction of interpretations of φ at all reach-
able states, and ∨ is interpreted by min in the se-
mantics of this paper, ⟨f⟩φ is interpreted as the
minimum of interpretations of φ at all states s′

reachable from s by f in one step.
In a Kripke structure, for each propositional sym-

bol a and for each state s, it is defined whether a
is true or false at s. In the semantics of this pa-
per, if a is true, then a is interpreted as 0, and if
a is false, a is interpreted as ∞. Thus, the formula
a∨⟨f⟩(1∧X) is interpreted as 0 if a is true, and has
the same value as that of ⟨f⟩(1 ∧ X) if a is false.

Now, consider the formula µX(a ∨ ⟨f⟩(1 ∧ X))
made of the µ-operator, which gives the least fixed
point. In the ordinary semantics, the truth value
of this formula is given as the least interpretation

of the variable X that satisfies the equation

X = a ∨ ⟨f⟩(1 ∧ X).

Roughly speaking, the truth value of the formula
can be computed by expanding X as follows.

X = a ∨ ⟨f⟩(1 ∧ X)
= a ∨ ⟨f⟩(1 ∧ (a ∨ ⟨f⟩(1 ∧ X)))
= · · ·

Having the least fixed point as its interpretation
means that if the truth value is not determined no
matter how many times it is expanded, then the
formula is interpreted as false. Thus, the above
formula is interpreted at a state s as true if a state
where a is true is reachable from s by traversing f
iteratively, and otherwise as false.

Since the proposition true is interpreted as the
minimum element 0 and the proposition false is in-
terpreted as the maximum element ∞ in the se-
mantics of this paper, the µ-operator is computed
as the greatest fixed point. So，the above formula
is interpreted as ∞ at s if any state where a is true
is not reachable from s by traversing f iteratively.
And if some state where a is true is reachable from
s, this formula is interpreted as the length of the
shortest path to a state where a is true, because 1
is added as f is traversed once.

Here is another example. For a propositional
symbol b, the interpretation of its negation ¬b is
∞ if b is true, and 0 if b is false. Thus, the in-
terpretation of the formula ¬b ∨ 1 is 1 if b is true,
and 0 if b is false. The modality o is called global
modality, and allows transition to any state from
any state. Using this modality, let us interpret the
following formula.

[o](¬b ∨ 1)

For each modality f , [f] is also a modal oper-
ator. In the ordinary semantics, a formula of the
form [f]φ holds at a state s if and only if φ holds at
any state s′ reachable from s by f in one step. The
interpretation of [f]φ is thought to be the conjunc-
tion of interpretations of φ at all reachable states.
In the semantics of this paper, since ∧ is interpreted
by plus, [f]φ is interpreted as the sum of interpre-
tations of φ at all states s′ reachable from s by f
in one step.

Accordingly, interpreting the above formula in
the semantics of this paper involves counting 1 for
each state at which b holds. So after all, no matter
where this formula is interpreted, its interpretation
is the number of states at which b holds in the whole

Kripke structure.
As in the above examples, by applying the se-

mantics of this paper, one can express various prop-
erties on Kripke structures including quantitative
measures. We have seen that one can easily express
the length of the shortest paths and the number of
states at which a specified condition holds.

The goal of this research is to define the above
semantics rigorously, formalize the algorithm for
model checking according to the semantics, and im-
plement it efficiently. And we also investigate the
applicability of the semantics. At present, we have
two applications in mind: shape analysis [8] in the
style of Tanabe et al. [10, 9], and data flow analysis
for compiler optimization [6].

Model checking in general means to compute the
interpretation of a given formula on a concrete
Kripke structure [2]. In this research, we study
the algorithm that interprets a formula according
to the semantics on N∞. As for the µ-operator, the
ordinary iterative algorithm is applicable. First,
the interpretation of the variable in the µ-operator
is tentatively set to ∞ at every state. As itera-
tion progresses, the interpretation of the variable
decreases or does not change. Once it decreases
to a finite value from ∞, it decreases only finitely
many times. So iteration is guaranteed to termi-
nate in finite times. In other words，N∞ is well-
founded.In contrast, computation of the ν-operator
is not trivial. In this research, we have shown that
computation of the ν-operator is also possible. Un-
der some restrictions on formulas, it is as efficient
as computation of the µ-operator.

As for the application to data flow analysis, we
plan to apply the semantics of the paper to the
framework of Lacey et al. [6], where CTL is used to
specify conditions on a control flow graph for pro-
gram transformation. By applying the semantics
on N∞, one can also obtain quantitative hints for
program transformation as interpretations of for-
mulas. In order to enhance such quantitative anal-
ysis, we have added the max operator to µ-calculus,
and extended the model checking algorithm.

The organization of this paper is as follows. In
the next section, we defines the syntax and seman-
tics of formulas on min-plus algebra. In Section 3,
which is the main part of this paper, we describe
the model checking algorithm under the semantics
in this paper. We then briefly describe prototype
implementation of the model checking algorithm in
Section 4 and its applications in Section 5. Sec-
tion 6 concludes the paper.

2 Syntax and Semantics of
Formulas

In this section, we formalize the syntax and the
semantics of formulas.

2.1 Syntax

To define the syntax of formulas, we assume the
following sets of symbols.
• PS: a set of proposition symbols
• Mod: a set of modality
• PV: a set of proposition variables
Formulas are then defined as follows:

φ ::= ⊥ | b | i | X | φ ∨ φ | φ ∧ φ |
φ → φ | ⟨m⟩φ | [m]φ |
µXφ | νXφ,

where b ∈ PS, i ∈ N∞, m ∈ Mod and X ∈ PV． In
the formulas µXφ and νXφ, it is required that X
not occur negatively in φ.

We abbreviate φ → ⊥ as ¬φ.

2.2 Semantics

Let K = (S,R, λ) be a Kripke structure.
• S is a set. An element of S is called a state.
• R ∈ Mod → P(S × S)
• λ ∈ PS → P(S)

A function ι ∈ PV → (S → N∞) is called a valu-
ation. (In this paper, if A and B are sets, A → B
denotes the set of all functions from A to B, and
P(A) denotes the set of all subsets of A.)

For a formula φ, we define JφKK,ι ∈ S → N∞ as
follows. We often omit K and ι.
• J⊥K(s) = ∞
• For a ∈ PS,

JaK(s) =

{
0 (s ∈ λ(a))
∞ (s ̸∈ λ(a))

• For i ∈ N∞, JiK(s) = i
• JXK(s) = ι(X, s)
• Jφ ∨ ψK(s) = min(JφK(s), JψK(s))
• Jφ ∧ ψK(s) = JφK(s) + JψK(s)
• Jφ → ψK(s) = JφK(s) ⇒ JψK(s), where for

i, j ∈ N∞, i ⇒ j =

{
0 if j ≤ i

j − i otherwise
• J⟨m⟩φK(s) = min

(s,s′)∈R(m)
JφK(s′)

• J[m]φK(s) =
∑

(s,s′)∈R(m)

JφK(s′)
• JµXφKι(s) =

sup{F (s) | F : S → N∞, F ≤ JφKι[X 7→F]}

• JνXφKι(s) =
min{F (s) | F : S → N∞, F ≥ JφKι[X 7→F]},

where, for a function f , f [x 7→ y] is a func-
tion whose value at x is y and whose value at
z ∈ dom(f) \ {x} is f(z). Also, for functions
F,G ∈ S → N∞, F ≤ G means that F (s) ≤ G(s)
for any s ∈ S. We often denote S → N∞ by L.

According to the definition, JµXφKι and JνXφKι

are the maximum and the minimum among F ∈ L
that satisfies F = JφKι[X 7→F], respectively.

3 Model Checking Algorithm

In this section, we give algorithms for model check-
ing under the semantics defined in the previous sec-
tion.

As mentioned in Section 1, since N∞ is well-
founded, the interpretation of the µ-operator can
be obtained by ordinary iterative computation.
In the case of the ν-operator, however, the well-
foundedness of N∞ does not guarantee that this
kind of computation terminates. Thus, a new
kind of computation for the fixed point operator
is needed.

3.1 Overview

We first construct a model checking algorithm for
formulas without implications. If a formula con-
tains no implications, one can determine whether
or not the interpretation of the formula at a state is
0 or not by abstract computation described in Sec-
tion 3.5.1. Then, using the information obtained by
abstract computation, one can rewrite ν-operators
into µ-operators in the formula. We explain this
fact in Section 3.5.1, the algorithm using abstract
computation in Section 3.5.2, and the proof of its
correctness in Section 3.5.3.

The overall algorithm is defined as the procedure
comp fml in Figure 1, which returns JφK for a for-
mula φ. We assume that φ contains no free propo-
sition variables.

The procedure comp fml calls the other proce-
dure comp ni in Figure 1 with the result ⌈φ⌉ of
translating φ into its corresponding semantic ex-
pression as defined in Section 3.2. The procedure
comp ni first calls the procedure acomp which per-
forms the abstract computation mentioned above.
The procedure acomp is given in Figure 4 and de-
fined in Section 3.5.1.

The function Abst rewrites the semantic expres-
sion using the information obtained by abstract
computation and then the function νtoµ rewrites
ν-operators into µ-operators. They are defined in

var LV : Exp → N∞
var AV : Exp → N∞

comp fml(φ : Fml) : L
return comp ni(⌈φ⌉)

comp ni(E : SemS) : L
initialize LV
initialize AV
acomp(E)
return comp(νtoµ(Abst(E)))

Figure 1: Overall model checking algorithm (with-
out ⇒)

var LV ′ : Exp → N∞

comp fml ′(φ : Fml) : L
initialize LV ′

return comp′(⌈φ⌉)

Figure 2: Overall model checking algorithm (with
⇒)

Section 3.5.1. The procedure comp then computes
the interpretation of the rewritten expression by or-
dinary iterative computation, since it contains no
ν-operators. The procedure comp is given in Fig-
ure 3 and defined in Section 3.3.

These procedures refer to the global variables
LV (Last Valuation) and AV (Abstract Valuation).
The variable LV stores a mapping from expressions
to elements of N∞. We assume that LV is imple-
mented as an array or a table. Assignments like
LV (X(s)) := i are assumed to destructively mod-
ify the mapping in LV . The variable AV stores
abstract valuations obtained by abstract computa-
tion.

These variables are initialized in the procedure
comp ni with an empty mapping, whose value is
undefined for all expressions.

If a formula contains implications, one can
compute its interpretation by iteratively mak-
ing approximate expressions without implications
and computing their interpretations by comp ni .
The overall algorithm is defined as the procedure
comp fml ′ in Figure 2, which refers to the global
variable LV ′, initializes it, and calls the procedure
comp′ given later in Section 3.6.

Some definitions needed to present the algo-
rithms are given in the next section.

3.2 Definitions

Our model checking algorithm manipulates new
kinds of syntactic entities called expressions and
semantic expressions. Following are some relevant
sets including those of these entities.
• S : the set of all states in a Kripke structure
• Fml : the set of all formulas
• Exp : the set of all expressions
• SemS = S → Exp

(expressions and semantic expressions)
The set Exp of expressions is defined as follows:

Exp ∋ E ::= min({Ej}) |
∑

({Ej}) | Xs | i |
E− ⇒ E+ | µXEs | νXEs,

where E−, E+ ∈ Exp, {Ej} is a sequence of Exp,
i ∈ N∞, X ∈ PV, s ∈ S, and E ∈ SemS . We call
an element of Exp an expression, and an element
of SemS a semantic expression.

A semantic expression represents a function ob-
tained by interpreting a formula. Namely, we define
⌈·⌉ ∈ Fml → SemS according to the semantics as
follows.
(translation from formulas to semantic expressions)
Let φ,ψ ∈ Fml, a ∈ PS, i ∈ N∞, X ∈ PV, m ∈
Mod, and s ∈ S.
• ⌈a⌉(s) = JaK(s)
• ⌈i⌉(s) = i
• ⌈X⌉(s) = Xs
• ⌈φ ∨ ψ⌉(s) = min({⌈φ⌉(s), ⌈ψ⌉(s)})
• ⌈φ ∧ ψ⌉(s) =

∑
({⌈φ⌉(s), ⌈ψ⌉(s)})

• ⌈⟨m⟩φ⌉(s) = min({⌈φ⌉(s′)}(s,s′)∈R(m))
• ⌈[m]φ⌉(s) =

∑
({⌈φ⌉(s′)}(s,s′)∈R(m))

• ⌈φ → ψ⌉(s) = ⌈φ⌉(s) ⇒ ⌈ψ⌉(s)
• ⌈µXφ⌉(s) = µX⌈φ⌉s
• ⌈νXφ⌉(s) = νX⌈φ⌉s
For X ∈ PV and E ∈ SemS , let µXE denote

the semantic expression that maps s ∈ S to µXEs.
The semantic expression νXE is defined similarly.
A function F ∈ L = S → N∞ can also be seen as a
semantic expression since N∞ ⊆ Exp.
(order on Exp ∪ SemS)
For any E,E′ ∈ Exp ∪ SemS , we write E ≤ E′ if
and only if E is a subexpression of E′.

By this order, Exp ∪ SemS is well-founded.
(free and bound variables of expressions)
The set of all free variables of E (or E) is denoted by
FreeVar(E) (or FreeVar(E)). The set of all bound
variables in E (or E) is denoted by BndVar(E) (or
BndVar(E)).

We assume that FreeVar(E)∩BndVar(E) = ∅ for
any E ∈ Exp∪ SemS . By this assumption, “X is a
free variables of E” means that X occurs in E but
no µXE or νXE occurs in E, where X ∈ PV, E ∈
Exp ∪ SemS and E ∈ SemS .

We also assume that for each X ∈ PV, if E con-
tains a subexpression of the form µXE or νXE , it
is unique in E. By this assumption, we can define
the following operators.
(opE and smE)
The operator opE ∈ PV → {µ, ν} is defined as

opEX =


µ if µXE ≤ E for some E ∈ SemS

ν if νXE ≤ E for some E ∈ SemS

not defined otherwise,

and smE ∈ PV → SemS as

smEX =


E if µXE (or νXE) ≤ E

for some E ∈ SemS

not defined otherwise.

The operators opE and smE are defined similarly.
For instance, if µXE is a subexpression

of E for some E ∈ SemS , then µXE =
(opEX)X(smEX) holds. We denote this subex-
pression (opEX)X(smEX) by fixEX.
(substitution)
Let E ∈ SemS and E ∈ Exp. For X ∈ FreeVar(E)
(or X ∈ FreeVar(E)) and F ∈ SemS , E [X 7→ F] ∈
SemS (or E[X 7→ F] ∈ Exp) denotes the result of
substituting F for X in E (or E). The definition of
substitution is straight-forward. Note that for the
expression Xs, (Xs)[X 7→ F] = F(s) holds.

Finally, we define 0L ∈ L and ∞L ∈ L as the
constant functions that map any s ∈ S to 0 and ∞,
respectively. They are the minimum and maximum
in L with respect to the point-wise order in L =
S → N∞.

3.3 Computation of Expressions

In this section, we define the valuation of an ex-
pression or a semantic expression. If a semantic
expression is derived from some formula, the val-
uation of the semantic expression is equal to the
interpretation of the formula.
(valuations of expressions)
For ι ∈ PV → L, E ∈ Exp and E ∈ SemS , the
valuations JEKι ∈ N∞ and JEKι ∈ L are defined.
In the following, we assume that i ∈ N∞, X ∈
PV, E+, E− ∈ Exp, {Ej}j∈I is a sequence of Exp
(where I is its index set), and s ∈ S.
• JiKι = i
• JXsKι = (ι(X))(s)
• Jmin({Ej}j∈I)Kι = min

j∈I
JEjKι

• J∑({Ej}j∈I)Kι =
∑
j∈I

JEjKι

• JE− ⇒ E+Kι = JE−Kι ⇒ JE+Kι

comp(E : SemS) : L
for each s ∈ S do LV (E(s)) := comp(E(s))
return λs ∈ S. LV (E(s))

comp(E : Exp) : N∞
case (E) of

i ⇒ LV (E) := i
Xs ⇒ skip
min({Ej}j∈I) ⇒ LV (E) := min

j∈I
comp(Ej)

P

({Ej}j∈I) ⇒ LV (E) :=
X

j∈I

comp(Ej)

(µXE)(s) ⇒ LV (E) := iter(X, E , ∞L)(s)
return LV (E)

iter(X : PV, E : SemS , F : L) : L
for each s ∈ S do LV (Xs) := F (s)
while ∃s ∈ S. LV (Xs) ̸= LV (E(s)) do
for each s ∈ S do LV (Xs) := LV (E(s))
comp(E)

return λs ∈ S. LV (Xs)

Figure 3: Computation of valuations (without ⇒)

• JµXEsKι =
sup{F (s) | F ∈ L,F ≤ JEKι[X 7→F]}

• JνXEsKι =
min{F (s) | F ∈ L,F ≥ JEKι[X 7→F]}

• JEKι(s) = JE(s)Kι

Note that JEKι and JEKι no longer depend on the
Kripke structure except for its state set.

For any formula φ, JφKK,ι = J⌈φ⌉Kι holds. So
our goal is now to compute J⌈φ⌉Kι. The proce-
dure comp in Figure 3 computes JEKι ∈ L andJEKι ∈ N∞. As mentioned in Section 3.1, we use
the global variable LV : Exp → N∞ (Last Val-
uation). Each time the valuation of E ∈ Exp is
computed, the value LV (E) is updated as the val-
uation JEKιLV of E, where ιLV denotes a valuation
satisfying ιLV (Y)(s) = LV (Y s) for Y ∈ PV and
s ∈ S

As for i, Xs, min and
∑

, comp computes their
valuations recursively along the above definition.
As for the µ-operator, it calls the procedure iter
explained in the next section. Since ν is rewritten
to µ in the case without implications, it does not
need to handle the ν-operator.

In Figure 3, min
j∈I

comp(Ej) and
∑
j∈I

comp(Ej)

mean to actually compute the operators min and∑
on min-plus algebra.

3.4 Iterative Fixed Point Computa-
tion

The interpretation JµXEKι(s) of the µ-operator
µXE was defined as sup{F (s) | F ∈ L, F ≤JEKι[X 7→F]}. Because N∞ is well-founded as de-
scribed in Section 1, if S is a finite set, finite iter-
ative computation can compute the interpretation
of the µ-operator as follows.

First, define the function F0 ∈ L = S → N∞ as
∞L, i.e., F0(s) = ∞ for any s ∈ S. Next, for n ≥ 0,
define the function Fn+1 : S → N∞ as

Fn+1 = JEKι[X 7→Fn].

Then Fn+1 ≤ Fn always holds, and if S is finite,
there exists m ≥ 0 that satisfies Fm+1 = Fm. Here
Fm is equivalent to JµXEKι(s).

The above iterative computation is performed
by iter(X, E ,∞L) with the procedure iter in Fig-
ure 3. During this computation, LV (E(s)) ≤
LV (Xs) always holds, and LV (Xs) monotoni-
cally decreases and eventually becomes equal to
LV (E(s)) = JµXEKιLV . Note also that by the call
of comp inside iter , at the end of the computa-
tion iter(X, E ,∞L), JEKιLV = LV (E) holds for any
subexpression E ≤ µXE(s).

3.5 Algorithm for Semantic Expres-
sions without Implications “⇒”
and its Correctness

In this section, we introduce a model checking al-
gorithm for semantic expressions without implica-
tions. As mentioned in Section 3.1, the core of the
algorithm lies in rewriting the ν-operator to the
µ-operator using the information on whether each
instance of the ν-operator is evaluated to 0 or non-0
by abstract computation.

3.5.1 Abstract Computation

We now introduce the abstract computation, which
determines whether the valuation of an expression
is 0 or not. Using this information, one can make
a new expression whose valuation is equivalent to
that of the original one.

We first define the abstraction maps αN∞ and
αL:

αN∞(i) =

{
0 if i = 0
∞ otherwise

(αL(F))(s) = αN∞(F (s)),

acomp(E : SemS) : L
for each s ∈ S do AV (E(s)) := acomp(E(s))
return λs ∈ S. AV (E(s))

acomp(E : Exp) : N∞
case (E) of

i ⇒ AV (E) := αN∞(i)
Xs ⇒ skip
min({Ej}j∈I) ⇒ AV (E) := min

j∈I
acomp(Ej)

P

({Ej}j∈I) ⇒ AV (E) :=
X

j∈I

acomp(Ej)

µXEs ⇒ AV (E) := aiter(X, E , ∞L)(s)
νXEs ⇒ AV (E) := aiter(X, E , 0L)(s)

return AV (E)

aiter(X : PV, E : SemS , F : L) : L
for each s ∈ S AV (Xs) := F (s)
while ∃s ∈ S. AV (Xs) ̸= AV (E(s)) do
for each s ∈ S do AV (Xs) := AV (E(s))
acomp(E)

return λs ∈ S. AV (Xs)

Figure 4: Abstract computation

where i ∈ N∞, F ∈ L, and s ∈ S. Note that
these abstraction maps preserve the order of their
argument.

The procedures acomp and aiter in Figure 4 com-
pute abstract valuations of expressions including
fixed points. The procedure acomp is similar to
comp except that acomp abstracts each constant i
to 0 or ∞ depending on whether i is 0 or not, and it
computes fixed points by aiter . Since AV returns
only two values 0 and ∞, iteration of aiter always
terminates as in iterative fixed point computation
under the ordinary semantics.

At the end of the computation acomp(E), AV (E)
contains the information on whether the valuation
of a subexpression E ≤ E is 0 or not. Therefore, us-
ing abstract valuations in AV computed by acomp,
one can rewrite each subexpression E into 0 (as an
expression) if AV (E) = 0, where AV denotes the
final value of the global variable AV in acomp(E).
The result of rewriting E is denoted by Abst(E),
and that of rewriting E is denoted by Abst(E) and
used in Figure 1.

For E ∈ SemS , we define the valuation ιE ∈
(PV → L) → L as follows.

(ιE(X))(s) ={
0 if X ∈ BndVar(E) and (smEX)(s) = 0
∞ otherwise,

where s ∈ S and X ∈ PV. The valuation ιE returns
0 for X if X is bound to the expression 0.

Then ιAbst(E)(X)(s) = AV (Xs) holds for any
X ∈ FreeVar(E) ∪ BndVar(E) and s ∈ S, where
AV denotes the final value of the global variable
AV in acomp(E).

The abstracted semantic expression Abst(E) has
the following properties.
(properties of Abst(E))
We can show the following property:

JAbst(E)K = JEK.
Note that since E does not contain free variables,
the valuations of E and Abst(E) do not depend on
a valuation ι. Furthermore, for any ι ∈ PV → L,
E ∈ SemS , E ∈ Exp such that E ≤ Abst(E), and
Y ∈ BndVar(Abst(E)),

αL(ι(X)) = ιAbst(E)(X)
for any X ∈ FreeVar(E) ⇒JEKι = 0 ⇔ E = 0 (constant), and

αL(ι(X)) = ιAbst(E)(X)
for any X ∈ FreeVar(fixAbst(E)Y) ⇒

αL(JfixAbst(E)Y Kι) = ιAbst(E)(Y).

Due to space limintation, we do not give proofs
of these properties here. See [14].

3.5.2 Rewriting ν to µ

Using the properties of Abst(E) mentioned above,
one can rewrite ν in Abst(E) into µ. We denote this
rewriting process by νtoµ in Figure 1.

Since νtoµ(Abst(E)) contains no ν-operators, the
procedure comp in Figure 3 can compute the valu-
ation of E .

3.5.3 Proof of Correctness

Abstract computation by acomp stores abstract
valuations in AV , which decide whether valuations
of expressions, including fixed points, are 0 or not.
Since νtoµ changes ν into µ, we show here that the
ν-operator is equivalent to the µ-operator under the
condition assured by abstract computation.

We first examine semantic expressions E ∈ SemS

without µ and ν. In claim 1 below, we show that
if one knows the valuation of νXE is not 0 at any
state, one can easily compute the valuations of νXE
at certain states. In claim 2, using claim 1, we show
that the least and greatest fixed points of JEK are
equivalent to each other under the same condition
as that of claim 1. Finally, in claim 3, we show that
µ and ν are equivalent to each other even if the µ-
and ν-operators are nested.

Assume that BndVar(E) = ∅ so that E does not
contain µ and ν, and assume FreeVar(E) = {X}
so that X is the only propositional variable in E .
Then JE [X → ·]Kι can be seen as a function from
L to L by substitution, which does not depend on
ι. We denote this function simply by JEK below.

Remember that E contains only min,
∑

, con-
stants and Xs where s is a state. The operator min
can be moved outside of plus because on min-plus
algebra, plus distributes over min. Consequently,
for each s ∈ S there exists a set Is such that for
each i ∈ Is and s′ ∈ S there exists Asis′ ∈ N and
Csi ∈ N∞ such that for any F ∈ L

(JEK(F))(s) = min
i∈Is

(
∑
s′∈S

Asis′F (s′) + Csi).

In the following, we show JEK(∞L) is partially
equivalent to the least fixed point of JEK in the sense
mentioned in the claim.

(claim 1) Assume JEK ∈ L → L and its least fixed
point F ∈ L satisfies F (s) ̸= 0 for any s ∈ S. Then
for any s ∈ S, if

(JEK(∞L))(s) = min
s∈S

(JEK(∞L))(s),

then
F (s) = min

s∈S
(JEK(∞L))(s).

Namely, if m = min
s∈S

(JEK(∞L))(s) and sm ∈ S sat-

isfies (JEK(∞L))(sm) = m, then F (sm) can be com-
puted as (JEK(∞L))(sm).

(proof) Let m = min
s∈S

(JEK(∞L))(s) and sm ∈ S be

such that (JEK(∞L))(sm) = m. Define T ⊂ S as

T = {t ∈ S | F (t) = min
s∈S

F (s)}.

T is not empty since N∞ is well-ordered.
First, since ∞L = max L, F = JEK(F) ≤JEK(∞L), which implies F (s) ≤ (JEK(∞L))(s) for

all s ∈ S. So F (sm) ≤ (JEK(∞L))(sm).
We show F (sm) ≥ (JEK(∞L))(sm) by reductio ad

absurdum assuming that F (sm) < (JEK(∞L))(sm).
Let L′ = S \T → N∞, and define JEK′ ∈ L′ → L′

as follows. For any H ∈ L′ and s ∈ S \ T ,

(JEK′(H))(s) = (JEK(l(H)))(s),

where l ∈ L′ → L is defined as follows. For any
s ∈ S,

(l(H))(s) =

{
0 if s ∈ T

H(s) otherwise.

Since L′ is also a complete lattice, JEK′ has a fixed
point F ′ ∈ L′.

We show that l(F ′) is a fixed point of JEK, i.e.,
for all s ∈ S,

(JEK(l(F ′)))(s) = (l(F ′))(s).

(Since (l(F ′))(s) = 0 for all s ∈ T , this is contra-
dictory to the assumptions that F (s) ̸= 0 and that
F is the least fixed point.)
(a) When s ∈ S \ T ,

(l(F ′))(s) = F ′(s)
= (JEK′(F ′))(s)
= (JEK(l(F ′)))(s).

(b) When s ∈ T , since JEK is a function con-
sists of only min and plus as described above,
(JEK(F))(s) = F (s) means

∃i ∈ Is s.t.
∑
s′∈S

Asis′F (s′) + Csi = F (s).

Because F (s) = min
s′∈S

F (s′), this i must satisfy either

of the following two propositions.
(1) For all s′ ∈ S, Asis′ = 0 and Csi = F (s).
(2) Csi = 0 and ∃! ts ∈ T s.t. for any s′ ∈ S,

Asis′ = 1 if ts = s′, and Asis′ = 0 otherwise.
If (1) is satisfied,

∑
s′∈S

Atis′F (s′)+Csi is constant,

thus (JEK(∞L))(s) ≤ Csi = F (s).
On the other hand, F (s) ≤ F (sm) as s ∈ T ,

F (sm) < (JEK(∞L))(sm) by the assump-
tion, and (JEK(∞L))(sm) ≤ (JEK(∞L))(s)
as (JEK(∞L))(sm) = m. Therefore
F (s) < (JEK(∞L))(s). It is contradictory to
(JEK(∞L))(s) ≤ F (s). So, (2) must hold.

Then since ts ∈ T , l(F ′))(ts) = 0 and
Asits(l(F

′))(ts) = 0. This implies (JEK(l(F ′)))(s) =
0. Since s ∈ T , (l(F ′))(s) = 0, so (JEK(l(F ′)))(s) =
(l(F ′))(s).

Because of (a) and (b), l(F ′) is a fixed point ofJEK, resulting in the contradiction above.
¤

When F ∈ L is the greatest fixed point, a similar
claim can be shown without assuming F (s) ̸= 0.

We denote the least fixed point of JEK by νJEK,
and the greatest fixed point by µJEK.

For E ∈ SemS and i ∈ N, we denote by JEKi the i-
th iteration of the map JEK, i.e., JEK0 is the identity
map and JEKi+1 = JEKi◦JEK. Do not confuse it withJEKι ∈ L where ι is a valuation.

We also define E(X,i)F ∈ SemS for any E ∈
SemS , X ∈ PV, i ∈ N and F ∈ L as follows.{

E(X,i+1)F = E [X 7→ E(X,i)F]
E(X,0)F = E [X 7→ F]

If E ∈ SemS satisfies the same properties as those
of claim 1, the following claim also holds.

(claim 2) JEK|S|(∞L) = νJEK = µJEK
(proof) We define Si ⊂ S for any i ∈ N as

Si = {s ∈ S | (JEKi(∞L))(s)
= (νJEK)(s) = (µJEK)(s)},

and show |Si| ≥ i for any i ≤ |S| by induction on i.
(i) When i = 0, clearly |Si| ≥ 0.
(ii) When 0 � i ≤ |S| − 1, let L′ = S \ Si → N∞
and define JEKi ∈ L′ → L′ as

JEKi(G) = (JEK(fi(G)))|S\Si

for any G ∈ L′, where fi : L′ → L is defined as

(fi(G))(s) =

{
(JEKi(∞L))(s) if s ∈ Si

G(s) otherwise

for all s ∈ S. (For F ∈ L = S → N∞, F |S\Si

denotes the restriction of F to S \ Si.)
A semantic expression SemS\Si

∋ Ei = E [X 7→
F] that consists of min and plus represents JEKi,
where

F =

{
E(X,i)∞L(s) if s ∈ Si

Xs otherwise.

By the definiton of JEKi, νJEK|S\Si
is a fixed point

of JEKi. Thus νJEKi ≥ νJEK|S\Si
. This implies, for

any s ∈ S\Si, νJEKi(s) > 0. Therefore JEKi satisfies
the assumption of claim 1.

Using claim 1, there exists s ∈ S \ Si such that

(JEKi(∞L′))(s) = (νJEKi)(s).

And by definition of JEKi,

JEKi+1(∞L) = JEK(JEKi(∞L)) ≤ JEKi(∞L′)

holds. So

(JEKi+1(∞L))(s) ≤ (JEKi(∞L′))(s) = (νEi)(s).

And since νJEK ≤ µJEK ≤ JEKi+1(∞L),

(νJEK)(s) ≤ (µJEK)(s)
≤ (JEKi+1(∞L))(s)
≤ (νJEKi)(s)

holds. Furthermore, (νJEK)|S\Si
is a fixed point ofJEKi by the definition of JEKi, so

νJEKi ≤ (νJEK)|S\Si
.

Thus

(νJEKi)(s) ≤ (νJEK)(s) ≤ (µJEK)(s)
≤ (JEKi+1(∞L))(s)
≤ (νJEKi)(s).

Therefore

(νJEK)(s) = (µJEK)(s) = (JEKi+1∞L)(s)

holds. After all, |Si+1| ≥ |Si| + 1 ≥ i + 1. By the
induction, |Si| ≥ i for all 0 ≤ i ≤ |S|. It means
|S|S|| ≥ |S|, i.e., JEK|S| = νJEK = µJEK.

¤
If E ∈ SemS consists of only min and plus, JEK|S|

(= νJEK = µJEK) can also be described as a func-
tion consisting of min and plus. Here we define a
semantic expression which represents it.

For E ∈ SemS that satisfies the same properties
as those of the above claims,

JEKi(∞L) = JE(X,i)∞LK
holds.

Even if the condition “for all s ∈ S, (νJEK)(s) ̸=
0” does not hold, if

for all s ∈ S,
(ν(or µ)JEK)(s) = 0 ⇒

(JEKF)(s) = 0 for any F ∈ L, or
(ν(or µ)JEK)(s) = 0 ⇒ JEK(s) is constantly zero

is satisfied, claim 2 holds, because constant parts
are not concerned with fixed point computation.
Also, even if E contains free variables, claim 2 holds
(under an appropriate valuation) because they do
not change during fixed point computation of JEK
like constants.

One of the properties of Abst(E) we mentioned
before has the conclusion:

JEKι = 0 ⇔ E = 0 (constant).

Clearly, JEKι is constantly zero if E = 0. Using this
assumption, we will show the last claim. We first
define PW : (Exp ∪ SemS) → (Exp ∪ SemS) used
in the claim.
• PW (i) = i
• PW (Xs) = Xs
• PW (min({Ej})) = min({PW (Ej)})
• PW (

∑
({Ej})) =

∑
({PW (Ej)})

• PW ((µXE)s) = (E(X,|S|)∞L)s
• PW ((νXE)s) = (E(X,|S|)∞L)s
• PW (E)s = PW (Es),

where i ∈ N∞, X ∈ PV, {Ej} is a sequence of Exp,
E ∈ SemS , and s ∈ S. PW rewrites fixed point
operators to powers.

(claim 3) Let E be a semantic expression with no
free variables such that for any ι : PV → L, E ∈
Exp such that E ≤ E and Y ∈ BndVar(E),

αL(ι(X)) = ιE(X)
for any X ∈ FreeVar(E) ⇒JEKι = 0 ⇔ E = 0 (constant), and

αL(ι(X)) = ιE(X)
for any X ∈ FreeVar(fixEY) ⇒

αL(JfixEY Kι) = ιE(Y).

Then JEKι = Jνtoµ(E)Kι.

(proof) First note that

νtoµ(smE(X))(s) = PW (smE(X))(s) = 0

if smE(X)(s) = ιE(X)(s) = 0, and that

JνXEKι ≤ JµXEKι

≤ Jνtoµ(νXE)Kι

= Jνtoµ(µXE)Kι

≤ JPW (νXE)Kι

= JPW (µXE)Kι

for any ι ∈ PV → L, E ∈ SemS , and X ∈ PV.
We show the following proposition by induction

on the construction of expressions and semantic ex-
pressions. For any E ∈ Exp, F ∈ SemS such that
E,F ≤ E and ι ∈ PV → L,

αL(ι(Y)) = ιE(Y)
for any Y ∈ FreeVar(E) ⇒JEKι = JPW (E)Kι, and

αL(ι(Y)) = ιE(Y)
for any Y ∈ FreeVar(F) ⇒JFKι = JPW (F)Kι.

The proof of this proposition is in [14].
Then for E ∈ Exp such that E ≤ E , if

ι ∈ PV → L satisfies ι(Y) = ιE(Y) for any
Y ∈ FreeVar(E), then JEKι = Jνtoµ(E)Kι, be-
cause JEKι ≤ Jνtoµ(E)Kι ≤ JPW (E)Kι and JEKι =JPW (E)Kι. For F ∈ SemS such that F ≤ E , a
similar proposition holds.

¤

3.5.4 Complexity

Let l be the length of the target formula, dn be the
nesting depth of fixed point operators, and da be
the alternating depth.

Iteration in abstract computation has the same
complexity O((l|S|2) · |S|da)) as computation of µ-
or ν-operators under the ordinary semantics since
there are only two values 0 and ∞. Transform-
ing expressions by Abst and νtoµ has the complex-
ity O(l|S|2). In the last iteration in comp ni , each
fixed point operator iterates at most |S| times by
claim 2, so its complexity is O((l|S|2) · (|S|dn)).

The total complexity is O((l|S|2) · (|S|dn)) after
all, since da ≤ dn in general.

3.6 Algorithm for Semantic Expres-
sions with Implications and its
Correctness

In this section, we introduce a model checking al-
gorithm for semantic expressions with implications.
Except for ν-operators, the algorithm is the same
as the one in Section 3.5. For ν-operators, we intro-
duce a translation procedure to obtain implication-
free expressions.

3.6.1 Algorithm

The whole algorithm is comp fml ′ in Figure 2. The
procedure comp′ in Figure 5 is the same as comp in
Figure 3 except for the implication operator and the
ν-operator. Implications are computed along the
definition of semantics. The ν-operator is handled
by the function trns.

The basic idea of the algorithm is as follows:
when implication operators exist, we cannot com-
pute the least fixed point by replacing ν-operators
with µ-operators any more. Therefore we use the
ordinary procedure as the basis of our algorithm:
starting from the zero function 0L, we iterate the
computation toward the fixed point. Since this pro-
cedure does not terminate in general, we need a way
to accelerate the computation. For this purpose,
we utilize the algorithm in the previous section. In
order to do so we need to remove implication opera-
tors from the formula. This is done by the function
trns.

Before explaining the function trns, let us sup-
pose for the moment that we could freely han-
dle negative values and the subtraction operation
in the min-plus algebra. Let E ∈ SemS and
FreeVar(E) = {X}. Recall that the function that
maps F ∈ L to λs ∈ S. JE [X 7→ F]K(s) is denoted
by JEK and its least fixed point is denoted by νJEK.

comp′(E : SemS) : L
for each s ∈ S do LV ′(E(s)) := comp′(E(s))
return λs ∈ S. LV ′(E(s))

comp′(E : Exp) : N∞
case (E) of

i ⇒ LV ′(E) := i
Xs ⇒ skip
min({Ej}j∈I) ⇒ LV ′(E) := min

j∈I
comp′(Ej)

P

({Ej}j∈I) ⇒ LV ′(E) :=
X

j∈I

comp′(Ej)

(E− ⇒ E+) ⇒ if comp′(E+) ≤ comp′(E−) then LV ′(E) := 0
else LV ′(E) := comp′(E+) − comp′(E−)

µXEs ⇒ LV ′(E) := iter ′(X, E , ∞L)(s)
νXEs ⇒ LV ′(E) := compν(X, E)(s)

return LV ′(E)

(iter ′ is defined in the same manner as iter)

compν(X : PV, E : SemS) : L
for each s ∈ S do LV ′(Xs) := 0
while ∃s ∈ S s.t. comp′(E)(s) ̸= LV ′(Xs) do
for each s ∈ S do LV ′(Xs) += comp ni(trns(νXE , 0L, BndVar(νXE)))(s)

return λs ∈ S. LV ′(Xs)

trns(E : SemS , F : L, V : P(PV)) : SemS

var E ′ : SemS

for each s ∈ S do E ′(s) := trns(E(s), F (s), V)
return E ′

trns(E : Exp, n : N∞, V : P(PV)) : Exp
var E′ : Exp
case (E) of

i ⇒ E′ := i − n
Xs ⇒ if X ∈ V then E′ :=

P

(Xs, LV ′(Xs) − n) else E′ := LV ′(Xs) − n
min({Ej}j∈I) ⇒ E′ := min({trns(Ej , n, V)}j∈I)
P

({Ej}j∈I) ⇒ E′ :=
P

({trns(Ej , LV ′(Ej), V)}j∈I ,
X

j∈I

LV ′(Ej) − n)

(E− ⇒ E+) ⇒ if LV ′(E+) < LV ′(E−) then E′ := 0 else E′ := trns(E+, n + LV ′(E−), V)
µXEs ⇒ E′ :=

P

(µXtrns(E , λs ∈ S. LV ′(Xs), V))s, LV ′(Xs) − n)
νXEs ⇒ E′ :=

P

(νXtrns(E , λs ∈ S. LV ′(Xs), V))s, LV ′(Xs) − n)
return E′

Figure 5: Computation of semantic expressions with implications

Suppose that we are computing the least fixed point
νJEK and its current approximation is G. Instead of
simply computing JEK(G) as the next approxima-
tion, we consider the “parallel shift” l of JEK with
the amount of G, which could be defined as l(F) =JEK(F +G)−G, if we were able to use subtraction.
It is easy to see that νJEK − G is the least fixed
point of l. This argument suggests that we should
find an implication-free semantic expression E ′ such
that JE ′K effectively (under-)approximates the par-
allel shift l. The least fixed point νJE ′K can be
computed with the algorithm in the previous sec-
tion, and we can obtain the next approximation by
adding νJE ′K to the current approximation.

The function trns computes the above-mentioned
E ′ for given E . The desired property can be written
as JE ′[X 7→ F]K(s) = JE [X 7→ F+ιLV ′]K(s)−LV ′(s)
for s ∈ S, since the current approximation value
G(s) is stored as LV ′(Xs) in the pseudocodes. For
translating a subexpression E of E(s) appropri-
ately, the function trns keeps the number n. The
intention is that JE′K = JEK − n holds during the
computation. If this is satisfied for every subex-
pression, the desired property for E ′ is satisfied.
Unfortunately, it is not always the case during the
iteration: the equation can break for the expression
of the form E− ⇒ E− when LV ′(E+) < LV ′(E−).
However, we can show that the equations for all
subexpressions eventually hold and then the itera-
tion terminates.

3.6.2 Correctness

Due to space limitation, we do not present a de-
tailed correctness proof of the algorithm. Instead,
a brief sketch is given below.

We need to establish the following three facts:

(1) For subtractions of the form a− b in the func-
tion trns, a ≥ b always holds.

It should hold since the result is an element of
N∞. Note that the subtraction in the function
comp′ is all right since comp′(E+) ≥ comp′(E−)
is guaranteed by the condition of the if-statement.
(2) For νXE ∈ SemS , we need to show that the
valuation for X calculated by the function compν
does not exceed the correct valuation JνXEK.

It is clear from the condition of the while state-
ment in the function compν that the calculated val-
uation becomes a fixed point when the computa-
tion terminates. Therefore the fact (2) is enough
to show the result is the least fixed point.
(3) The iteration terminates.

There is a while loop in the function compν. The
loop must be terminated.

To see the fact (1), we can show that the follow-
ing conditions are satisfied during the computation.
• When the function trns is called for E ∈ SemS ,

F (s) ≤ LV ′(E(s)) holds for any s ∈ S.
• When the function trns is called for E ∈ Exp,

n ≤ LV ′(E) holds.
• For the subtraction in the form a − b, a ≥ b

holds.
These conditions can be established as invariants:
the function trns is first called in the function
compν, for an element of SemS . The first condi-
tion need to be checked here but it trivially holds.
Other calls of the function trns reside in itself, and
assuming the conditions at the top of the function,
one can easily checked that the subsequent calls of
the functions satisfy the conditions.

For the fact (2), we need to check the following
conditions:
• For the return value E ′ of the function trns

for E ∈ SemS , s ∈ S and ι : PV → L,JE ′Kι(s) + LV ′(Xs) ≤ JEKι′(s).
• For the return value E′ of the function trns

for E ∈ Exp,JE′Kι + LV ′(E) ≤ JEKι′ .
where ι′ = ι[Y 7→ ι(Y) + ιLV ′(Y) | Y ∈ V]. These
conditions can be checked in the same manner as
in the fact (1).

For the fact (3), first note that the values for
the negative part converge after finitely many iter-
ations since they monotonically decrease and N∞ is
well-founded. All expressions that are handled by
the function trns reside in the positive part. If an
expression of the form E− ⇒ E+ is handled by trns,
LV ′(E+) increases and LV ′(E−) decreases during
the iteration. Therefore once LV ′(E+) ≥ LV ′(E−)
holds, it continuously holds until the end of the
computation. Moreover, if there are expressions
that satisfy JE+K ≥ JE−K and LV ′(E+) < LV ′(E−)
at some point, at least one of such expressions satis-
fies LV ′(E+) ≥ LV ′(E−) in the next iteration step:
otherwise the approximated parallel shift would be
the same as that of the previous iteration step. In
such a case, LV ′ does not change from the previous
value, which contradicts the fact that the computa-
tion has not reached the fixed point. Therefore af-
ter finitely many iterations, the function trns takes
the correct branch for all expressions of the form
E− ⇒ E+. When this is achieved, the exact paral-
lel shift is computed, and it reaches the least fixed
point at the next iteration step.

3.6.3 Complexity

Once the values for the negative part converge, the
iteration terminates in at most |S|n times, where n

is the number of implications in the formula. How-
ever, at the moment, we do not have estimation for
the computation required until the values for the
negative part are fixed. It is future work to esti-
mate it for the current algorithm or to improve the
algorithm so that the complexity can be estimated.

4 Implementation

In this section, we introduce the prototype imple-
mentation of the algorithm in the previous section.
We have implemented the algorithm without im-
plication →. In Section 4.1, we briefly describe
the program implementing the algorithm. And in
Section 4.2, we show the result of an experiment
executing the program on simple examples.

4.1 Program

We have implemented the algorithm without impli-
cation → using C++, where negation is allowed in
some cases.

Elements of N∞ other than ∞ are implemented
as multiple-word integers. The set of states is im-
plemented as an array of integers. Modalities are
implemented as arrays of variable-length arrays of
pointers to states, and valuations ι as arrays of
pointers to N∞. Formulas and expressions are im-
plemented as tree structures. Semantic expressions
are implemented as arrays of expressions. Abstract
computation and concrete computation are real-
ized by the same procedure with a switch, which
changes the valuation of a varialbe or constant to
0 or ∞ in the case of abstract computation. And
LV,AV are implemented as properties of expres-
sions.

4.2 Preliminary Experimental Re-
sults

We have executed the above program on the fol-
lowing three formulas:
• µX(a ∨ ⟨f⟩X)
• µX(a ∨ ⟨f⟩(1 ∧ X))
• the formula (*) in Section 5

to see the efficiency of the program and the algo-
rithm. Transition systems in Kripke structures we
used are binary trees, whose depth we changed from
2 to 16. Thus, the number of states is 2depth − 1.

We show the result on Table 1 and in Figure 6.
Both on Table 1 and in Figure 6, execution time
was measured by Win32 API, timeGetTime in mil-
liseconds. Table 1 shows execution time in columns
“reachability”, “s.p.length” and “min-access”. In

depth reachability s.p.length min-access

2 0 0 0
3 0 0 16
4 0 0 32
5 15 31 110
6 16 63 250
7 47 125 531
8 125 203 1,203
9 438 640 2,156

10 1,406 2,094 2,500
11 3,031 2,093 6,438
12 8,469 7,281 19,907
13 14,921 27,093 53,641
14 31,078 65,096 106,844
15 103,923 169,251 310,578
16 256,892 378,426 620,624

Table 1: Execution Time

Execution times for interpreting formulas on binary tree structured
Kripke structures

0

100000

200000

300000

400000

500000

600000

700000

0 10000 20000 30000 40000 50000 60000 70000

the number of states

e
xe

c
u
ti
o
n
 t

im
e
(m

s)

reachability s.p.length min-access

Figure 6: Execution Time

column “reachability”, we show execution time to
interpret the formula µX(a ∨ ⟨f⟩X) which repre-
sents the reachability to states at which a holds. In
column “s.p.length”, we show execution time to in-
terpret the formula µX(a∨⟨f⟩(1∧X)). Remember
that it represents reachability with shortest path
length. In column “min-access”, we show execution
time to interpret the formula νX(halt∨(access x∧
⟨f⟩(1∧X))∨ (¬access x∧⟨f⟩X)) which represents
the minimum number of accesses as in the next sec-
tion. In Figure 6, horizontal axis shows the depth
of binary tree.

Execution time is about proposional to the num-
ber of states in each case. The execution times
of “s.p.length” is in double the time of “reachabil-
ity” although the semantics is extended to infinite
space.

5 Data Flow Analysis

As mentioned in the introduction, Lacey et al. used
CTL to specify conditions on a control flow graph
for the purpose of program transformation [6]. In
this short section, let us explain how our semantics
can be applied to their framework.

For example, assume that the proposition
access x holds at a node in a control flow graph
if the variable x is accessed at the node. The min-
imum number of accesses to the variable x on an
execution path starting from a node can then be
expressed by the following formula under our se-
mantics:

νX(halt ∨ ((access x → ⟨f⟩(1 ∧ X)) ∧
(¬access x → ⟨f⟩X))).

Note that if there exists an execution path on which
x is never accessed, the formula is interpreted as 0.
The ν-operator well matches this situation.

The above formula can be rewritten to the fol-
lowing one which does not contain implication →.

νX(halt ∨ (access x ∧ ⟨f⟩(1 ∧ X)) ∨
(¬access x ∧ ⟨f⟩X)) (∗)

This is further rewritten to the following equivalent
formula.

µX(νY (halt ∨ (¬access x ∧ ⟨f⟩Y)) ∨
(access x ∧ ⟨f⟩(1 ∧ X)) ∨
(¬access x ∧ ⟨f⟩X))

Note that the whole formula is led by the µ-
operator while the ν-operator is used in the subfor-
mula νY (halt∨ (¬access x∧⟨f⟩Y)), which means
that there exists a finite or infinite execution path
on which access x never holds. This subformula
can be interpreted by the ordinary semantics as
true or false. In fact, the algorithm developed in
this paper makes this kind of transformation on
formulas automatically.

For a more complex example, assume that the
proposition update x holds at a node where the
variable x is updated. The minimum number of
accesses to the variable x after each update of x is
then expressed as follows:

φ ∨ νY ((update x ∧ (halt ∨ ⟨f⟩φ ∨ ⟨f⟩Y)) ∨
(¬update x ∧ ⟨f⟩Y)),

where φ is the following formula.

νX((access x → 1) ∧
(halt ∨ update x ∨ ⟨f⟩X))

The maximum number of accesses can be ex-
pressed by the following formula, if we introduce
another modal opeartor {f} corresponding to the
max operator on N∞.

νX(halt ∨ (access x ∧ {f}(1 ∧ X)) ∨
(¬access x ∧ {f}X))

In this way, for this kind of application, our frame-
work should be extended to include the max oper-
ator in order to model check formulas as above.

We have constructed an algorithm for extended
semantic expressions which contain the max oper-
ator. The algorithm is almost the same as that
for min-plus algebra. For an expression of the
form max({Ej}j∈I), trns chooses a subexpression
E ∈ {Ej}j∈I and changes max({Ej}j∈I) into E.
Then translated expressions have no max opera-
tors. Thus one can iteratively compute the least
fixed points as in the case of min-plus algebra.
However, the correctness proof of the algorithm is
not completed yet.

6 Discussions and Future
Work

In this paper, we gave the semantics that inter-
preted modal µ-calculus formulas on min-plus al-
gebra. It interpreted disjunctions by min, and con-
junctions by plus. Using this semantics, we suc-
ceeded in expressing numerical measures such as
the length of the shortest path and the number
of states satisfying some property. However, it is
not yet clear how useful the semantics we gave in
this paper is since it is not easy to imagine what a
formula means intuitively. Especially, finding prac-
tical applications of the ν-operator is a future re-
search issue.

The discussions so far also raise the future issue
to extend or change the semantics of this paper. Es-
pecially, there are many alternative interpretations
of modal operators. For example, when weights are
defined on transitions in Kripke structures, modal
operators should be interpreted by taking weights
into account. Another possibility is to define se-
mantics that contains not only min and plus, but
also max.

Nishizawa et al. [4, 7] gave a general-purpose
framework for modal µ-calculus using elements of
complete Heyting algebra as truth values of modal
µ-calculus formulas. The algebra N∞ used in this
paper also forms complete Heyting algebra. But
the semantics that is obtained by applying the
framework of Nishizawa et al. to N∞ is different

from the semantics of this paper, because the for-
mer interprets disjunctions by sup, while the latter
by plus. This difference is also clear since the se-
mantics by Nishizawa et al. is sound with respect to
the axioms of intuitionalistic modal logic, while the
semantics of this paper is not. Moreover, since the
semantics by Nishizawa et al. allows Kripke struc-
tures to be extended to multi-valued relations and
simulation relations, which are not included by the
semantics of this paper. Therefore, the research
by Nishizawa et al. and this research are not easily
comparable.

However, it is possible to introduce new se-
mantics that include both algebraic structures
as follows. Think of an algebraic structure
(L,

∨
,
∧

,⊗, ³,
⊗

) such that (L,
∨

,
∧

) is a com-
plete lattice, (L,⊗) is a semigroup, a ⊗ b ≤ c ⇐⇒
b ≤ a ³ c holds, and ⊗ distributes over

∨
.

And assume that ⊗ can be extended to the op-
erator

⊗
that allows an arbitrary number of argu-

ments. Based on this algebraic structure, semantics
of modal µ-calculus can be given as below.

[[φ ∨ ψ]]K,V
def= [[φ]]K,V ∨ [[ψ]]K,V

[[φ ∧ ψ]]K,V
def= [[φ]]K,V ⊗ [[ψ]]K,V

[[φ → ψ]]K,V
def= [[φ]]K,V ³ [[ψ]]K,V

[[µX.φ]]K,V
def=

∧
{W ∈ [S,L] |
[[φ]]K,V [X 7→W] ≤ W }

[[νX.φ]]K,V
def=

∨
{W ∈ [S,L] |
W ≤ [[φ]]K,V [X 7→W]}

[[♦φ]]K,V (s) def=
∨
{ (s → t) ⊗ [[φ]]K,V (t) |
t ∈ S }

[[¤φ]]K,V (s) def=
⊗

{ (s → t) ³ [[φ]]K,V (t) |
t ∈ S }

The semantics of this paper is obtained by applying
this semantics to the algebra (N∞, min, sup, plus,⇒
, Σ), while the semantics by Nishizawa et al. by ap-
plying it to (L,

∨
,
∧

,∧,⇒,
∧

), which is made from
the complete Heyting algebra (L,

∨
,⇒).

References

[1] François L. Baccelli, et al. Synchronization and
Linearity, An Algebra for Discrete Event Sys-
tems, Wiley, 1992.

[2] Edmund M. Clarke, Orna Grumberg and
Doron Peled. Model Checking, MIT Press,
1999.

[3] Clarke, E.M., Grumberg, O. and Long,
D. Model Checking and Abstraction, ACM
Transactions on Programming Languages and
Systems, vol.16, No.5, 1994, pp.1512–1542.

[4] Yukiyoshi Kameyama, Yoshiki Kinoshita, and
Koki Nishizawa. Weighted Kripke Structures
and Refinement of Models, 23rd Japan Society
for Software Science and Technology, Septem-
ber, 2006.

[5] Dexter Kozen. Results on the Propositional
µ-Calculus, Theoretical Computer Science,
Vol.27, No.3, 1983, pp. 333–354.

[6] David Lecay, Neil D. Jones, Eric van
Wyk, and Carl Christian Frederiksen. Com-
piler Optimization Correctness by Temporal
Logic, Higher-Order and Symbolic Computa-
tion, Vol.17, 2004, pp. 173–206.

[7] Koki Nishizawa, Yukiyoshi Kameyama and
Yoshiki Kinoshita. Simulations of Multi-
Valued Models for Modal µ-Calculus, Pro-
gramming Science Technical Report, AIST-
PS-2007-005, 2007.

[8] Mooly Sagiv, Thomas Reps and Reinhard Wil-
helm. Parametric Shape Analysis via 3-valued
Logic, ACM Transactions on Programming
Languages and Systems, Vol.24, No.3, 2002,
pp. 217–298.

[9] Toshifusa Sekizawa, Yoshinori Tanabe, Yoshi-
fumi Yuasa, and Koichi Takahashi. MLAT: A
Tool for Heap Analysis based on Predicate Ab-
straction by Modal Logic, The IASTED Inter-
national Conference on Software Engineering
(SE 2008), (to appear).

[10] Yoshinori Tanabe, Toshifusa Sekizawa, Yoshi-
fumi Yuasa, Koichi Takahashi. The Method
of Heap Verification Using Modal Logic (in
Japanese), 3rd Dependable Software Workshop
(DSW’06), January 27th, 2006, pp. 39–50.

[11] Fleming Nielson, Hanne Riis Nielson, Chris
Hankin. Principles of Program Analysis,
Springer-Verlag, 1999.

[12] E. A. Emerson and C-L. Lei. Efficient model
checking in fragments of the propositional mu-
calculus. Logic in Computer Science, 1986, pp.
257–278.

[13] D. Long, A. Browne, E. Clarke, S. Jha, and
W. Marrero. An improved algorithm for the
evaluation of fixpoint expressions. vol. 818 of
Lecture Notes in Computer Science, Springer-
Verlag, 1994, pp. 338–350.

[14] Dai Ikarashi. Modal µ-calculus on Min-Plus
Algebra N∞ and its Applications. Master’s
thesis, Graduate school of Information Sci-
ence and Technology, The University of Tokyo,
Japan, 2008.

